Division of Applied Mathematics, Brown University, Providence, RI 02912.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2100697118.
Understanding the mechanics of blood flow is necessary for developing insights into mechanisms of physiology and vascular diseases in microcirculation. Given the limitations of technologies available for assessing in vivo flow fields, in vitro methods based on traditional microfluidic platforms have been developed to mimic physiological conditions. However, existing methods lack the capability to provide accurate assessment of these flow fields, particularly in vessels with complex geometries. Conventional approaches to quantify flow fields rely either on analyzing only visual images or on enforcing underlying physics without considering visualization data, which could compromise accuracy of predictions. Here, we present artificial-intelligence velocimetry (AIV) to quantify velocity and stress fields of blood flow by integrating the imaging data with underlying physics using physics-informed neural networks. We demonstrate the capability of AIV by quantifying hemodynamics in microchannels designed to mimic saccular-shaped microaneurysms (microaneurysm-on-a-chip, or MAOAC), which signify common manifestations of diabetic retinopathy, a leading cause of vision loss from blood-vessel damage in the retina in diabetic patients. We show that AIV can, without any a priori knowledge of the inlet and outlet boundary conditions, infer the two-dimensional (2D) flow fields from a sequence of 2D images of blood flow in MAOAC, but also can infer three-dimensional (3D) flow fields using only 2D images, thanks to the encoded physics laws. AIV provides a unique paradigm that seamlessly integrates images, experimental data, and underlying physics using neural networks to automatically analyze experimental data and infer key hemodynamic indicators that assess vascular injury.
理解血流力学对于深入了解生理学机制和微循环中的血管疾病机制至关重要。鉴于评估体内流场的现有技术存在局限性,已经开发出基于传统微流控平台的体外方法来模拟生理条件。然而,现有的方法缺乏提供对这些流场进行准确评估的能力,特别是在具有复杂几何形状的血管中。传统的量化流场的方法要么仅依赖于分析可视化图像,要么在不考虑可视化数据的情况下强制执行基础物理,这可能会降低预测的准确性。在这里,我们通过使用物理信息神经网络将成像数据与基础物理结合起来,提出了人工智能测速法(AIV)来量化血流的速度和应力场。我们通过量化模仿囊状微动脉瘤(微动脉瘤芯片,或 MAOAC)的微通道中的血液动力学来展示 AIV 的能力,微动脉瘤是糖尿病视网膜病变的常见表现之一,糖尿病视网膜病变是糖尿病患者视网膜血管损伤导致视力丧失的主要原因。我们表明,AIV 可以在没有任何关于入口和出口边界条件的先验知识的情况下,从 MAOAC 中血流的二维(2D)图像序列中推断出二维(2D)流场,也可以仅使用二维(2D)图像推断出三维(3D)流场,这要归功于编码的物理定律。AIV 提供了一种独特的范例,它使用神经网络无缝地集成图像、实验数据和基础物理,以自动分析实验数据并推断出评估血管损伤的关键血液动力学指标。