Suppr超能文献

空位工程策略释放高熵氧化物的电催化析氧反应活性。

Vacancy Engineering Strategy Releases the Electrocatalytic Oxygen Evolution Reaction Activity of High-Entropy Oxides.

作者信息

Shen Boxiong, Li Shuang, Yang Mingtao, Ge Kai, Xia Hongjin, Li Qingyang, Ge Fei, Hu Yidong

机构信息

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.

School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin 300401, China.

出版信息

ACS Appl Mater Interfaces. 2025 May 21;17(20):29628-29638. doi: 10.1021/acsami.5c03365. Epub 2025 May 7.

Abstract

The sluggish kinetics of oxygen evolution reaction (OER) poses a great challenge to the industrial promotion of electrocatalytic water splitting and zinc-air battery. Herein, we demonstrate that the kinetic limitation of the OER imposed by a conventional adsorbate evolution mechanism can be successfully overcome through activating lattice oxygen in the electrocatalyst. For example, incorporating aluminum (Al) into high-entropy oxides (HEO) remarkably enhances the oxygen vacancy concentration, facilitates the generation of reactive oxygen species, and promotes the deprotonation during the electrochemical OER process, thereby boosting the kinetic reaction. This defect engineering strategy effectively decreases the energy barrier associated with the lattice oxygen oxidation and optimizes the configurational entropy of HEO, resulting in remarkable structural stability. Consequently, the developed HEO decorated with Al (HEO-Al) achieves an overpotential of ∼206 mV at 10 mA cm in water electrolysis and a power density (∼20 mW cm) in rechargeable zinc-air battery, with long-term stability of 100 h, realizing an optimal balance between electrocatalytic activity and stability. More importantly, the performances of HEO-Al are significantly superior to those of the HEO counterpart (∼260 mV, ∼1.5 mW cm) and commercial ruthenium oxide (∼359 mV, ∼5 mW cm), showing great competitiveness and application prospect. These results offer essential inspiration for other electrochemical applications dominated by the OER at the same time.

摘要

析氧反应(OER)缓慢的动力学对电催化水分解和锌空气电池的工业推广构成了巨大挑战。在此,我们证明,通过激活电催化剂中的晶格氧,可以成功克服传统吸附质演化机制对OER造成的动力学限制。例如,将铝(Al)掺入高熵氧化物(HEO)中可显著提高氧空位浓度,促进活性氧物种的生成,并在电化学OER过程中促进去质子化,从而加快动力学反应。这种缺陷工程策略有效地降低了与晶格氧氧化相关的能垒,并优化了HEO的构型熵,从而实现了显著的结构稳定性。因此,所制备的Al修饰的HEO(HEO-Al)在水电解中10 mA cm时的过电位约为206 mV,在可充电锌空气电池中的功率密度约为20 mW cm,具有100 h的长期稳定性,实现了电催化活性和稳定性之间的最佳平衡。更重要的是,HEO-Al的性能明显优于HEO对应物(约260 mV,约1.5 mW cm)和商业氧化钌(约359 mV,约5 mW cm),显示出巨大的竞争力和应用前景。这些结果同时为其他以OER为主导的电化学应用提供了重要的启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验