Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China.
State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China.
Nat Methods. 2024 Oct;21(10):1895-1908. doi: 10.1038/s41592-024-02400-9. Epub 2024 Sep 11.
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances.
在活细胞超分辨率(SR)显微镜中,每一个收集到的光子都很宝贵。在这里,我们描述了一种基于深度学习的数据高效去噪解决方案,以改进各种 SR 成像模式。该方法称为 SN2N,是一种具有自我启发的噪声到噪声模块,具有自我监督的数据生成和自我约束的学习过程。SN2N 与监督学习方法完全竞争,并且避免了对大型训练集和干净的真实数据的需求,只需要单个噪声帧进行训练。我们表明,SN2N 将光子效率提高了一到两个数量级,并且与用于体积、多色、延时 SR 显微镜的多种成像模式兼容。我们进一步将 SN2N 集成到不同的 SR 重建算法中,以有效地减轻图像伪影。我们预计 SN2N 将能够实现改进的活细胞 SR 成像,并激发进一步的进展。