Ahmad Rizwan, Bouman Charles A, Buzzard Gregery T, Chan Stanley, Liu Sizhuo, Reehorst Edward T, Schniter Philip
Department of Biomedical Engineering, The Ohio State University, Columbus OH, 43210, USA.
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.
Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool that provides excellent soft-tissue contrast without the use of ionizing radiation. Compared to other clinical imaging modalities (e.g., CT or ultrasound), however, the data acquisition process for MRI is inherently slow, which motivates undersampling and thus drives the need for accurate, efficient reconstruction methods from undersampled datasets. In this article, we describe the use of "plug-and-play" (PnP) algorithms for MRI image recovery. We first describe the linearly approximated inverse problem encountered in MRI. Then we review several PnP methods, where the unifying commonality is to iteratively call a denoising subroutine as one step of a larger optimization-inspired algorithm. Next, we describe how the result of the PnP method can be interpreted as a solution to an equilibrium equation, allowing convergence analysis from the equilibrium perspective. Finally, we present illustrative examples of PnP methods applied to MRI image recovery.
磁共振成像(MRI)是一种非侵入性诊断工具,无需使用电离辐射就能提供出色的软组织对比度。然而,与其他临床成像方式(如CT或超声)相比,MRI的数据采集过程本质上较慢,这促使了欠采样的出现,进而推动了对从欠采样数据集中进行准确、高效重建方法的需求。在本文中,我们描述了“即插即用”(PnP)算法在MRI图像恢复中的应用。我们首先描述MRI中遇到的线性近似逆问题。然后我们回顾几种PnP方法,其统一的共性是将迭代调用去噪子程序作为一个更大的受优化启发算法的一步。接下来,我们描述如何将PnP方法的结果解释为一个平衡方程的解,从而允许从平衡角度进行收敛分析。最后,我们给出PnP方法应用于MRI图像恢复的示例。