Suppr超能文献

磁共振成像的即插即用方法:利用去噪器进行图像恢复。

Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery.

作者信息

Ahmad Rizwan, Bouman Charles A, Buzzard Gregery T, Chan Stanley, Liu Sizhuo, Reehorst Edward T, Schniter Philip

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus OH, 43210, USA.

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool that provides excellent soft-tissue contrast without the use of ionizing radiation. Compared to other clinical imaging modalities (e.g., CT or ultrasound), however, the data acquisition process for MRI is inherently slow, which motivates undersampling and thus drives the need for accurate, efficient reconstruction methods from undersampled datasets. In this article, we describe the use of "plug-and-play" (PnP) algorithms for MRI image recovery. We first describe the linearly approximated inverse problem encountered in MRI. Then we review several PnP methods, where the unifying commonality is to iteratively call a denoising subroutine as one step of a larger optimization-inspired algorithm. Next, we describe how the result of the PnP method can be interpreted as a solution to an equilibrium equation, allowing convergence analysis from the equilibrium perspective. Finally, we present illustrative examples of PnP methods applied to MRI image recovery.

摘要

磁共振成像(MRI)是一种非侵入性诊断工具,无需使用电离辐射就能提供出色的软组织对比度。然而,与其他临床成像方式(如CT或超声)相比,MRI的数据采集过程本质上较慢,这促使了欠采样的出现,进而推动了对从欠采样数据集中进行准确、高效重建方法的需求。在本文中,我们描述了“即插即用”(PnP)算法在MRI图像恢复中的应用。我们首先描述MRI中遇到的线性近似逆问题。然后我们回顾几种PnP方法,其统一的共性是将迭代调用去噪子程序作为一个更大的受优化启发算法的一步。接下来,我们描述如何将PnP方法的结果解释为一个平衡方程的解,从而允许从平衡角度进行收敛分析。最后,我们给出PnP方法应用于MRI图像恢复的示例。

相似文献

2
MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.使用自校准去噪器的磁共振成像恢复
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.
3
On Plug-and-Play Regularization Using Linear Denoisers.关于使用线性去噪器的即插即用正则化
IEEE Trans Image Process. 2021;30:4802-4813. doi: 10.1109/TIP.2021.3075092. Epub 2021 May 7.
4
6
Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.用于磁共振图像恢复的去噪广义期望一致逼近
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
8
Plug-and-Play Image Reconstruction Is a Convergent Regularization Method.即插即用图像重建是一种收敛正则化方法。
IEEE Trans Image Process. 2024;33:1476-1486. doi: 10.1109/TIP.2024.3361218. Epub 2024 Feb 21.

引用本文的文献

1
FAST MULTI-CONTRAST MRI USING JOINT MULTISCALE ENERGY MODEL.基于联合多尺度能量模型的快速多对比度磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981204. Epub 2025 May 12.
2
ACCELERATING QUANTITATIVE MRI USING SUBSPACE MULTISCALE ENERGY MODEL (SS-MUSE).使用子空间多尺度能量模型(SS-MUSE)加速定量磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980741. Epub 2025 May 12.
5
Plug-and-Play Self-Supervised Denoising for Pulmonary Perfusion MRI.用于肺部灌注MRI的即插即用自监督去噪
Bioengineering (Basel). 2025 Jul 1;12(7):724. doi: 10.3390/bioengineering12070724.
6
Learning Task-Specific Strategies for Accelerated MRI.学习用于加速磁共振成像的特定任务策略。
IEEE Trans Comput Imaging. 2024;10:1040-1054. doi: 10.1109/tci.2024.3410521. Epub 2024 Jul 1.
9
Multi-Scale Energy (MuSE) framework for inverse problems in imaging.用于成像逆问题的多尺度能量(MuSE)框架。
IEEE Trans Comput Imaging. 2024;10:1250-1265. doi: 10.1109/tci.2024.3449101. Epub 2024 Aug 23.
10
Physics-driven Learned Deconvolution of Multi-spectral Cellular MRI with Radial Sampling.基于径向采样的物理驱动多光谱细胞MRI学习去卷积
Conf Rec Asilomar Conf Signals Syst Comput. 2023 Oct-Nov;2023:1453-1457. doi: 10.1109/ieeeconf59524.2023.10476927.

本文引用的文献

1
MODEL BASED IMAGE RECONSTRUCTION USING DEEP LEARNED PRIORS (MODL).基于深度学习先验的模型图像重建(MODL)。
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:671-674. doi: 10.1109/isbi.2018.8363663. Epub 2018 May 24.
3
Regularization by Denoising: Clarifications and New Interpretations.通过去噪进行正则化:阐释与新解读
IEEE Trans Comput Imaging. 2019 Mar;5(1):52-67. doi: 10.1109/TCI.2018.2880326. Epub 2018 Nov 9.
6
Deep learning for undersampled MRI reconstruction.深度学习在欠采样 MRI 重建中的应用。
Phys Med Biol. 2018 Jun 25;63(13):135007. doi: 10.1088/1361-6560/aac71a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验