Suppr超能文献

磁共振成像的即插即用方法:利用去噪器进行图像恢复。

Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery.

作者信息

Ahmad Rizwan, Bouman Charles A, Buzzard Gregery T, Chan Stanley, Liu Sizhuo, Reehorst Edward T, Schniter Philip

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus OH, 43210, USA.

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool that provides excellent soft-tissue contrast without the use of ionizing radiation. Compared to other clinical imaging modalities (e.g., CT or ultrasound), however, the data acquisition process for MRI is inherently slow, which motivates undersampling and thus drives the need for accurate, efficient reconstruction methods from undersampled datasets. In this article, we describe the use of "plug-and-play" (PnP) algorithms for MRI image recovery. We first describe the linearly approximated inverse problem encountered in MRI. Then we review several PnP methods, where the unifying commonality is to iteratively call a denoising subroutine as one step of a larger optimization-inspired algorithm. Next, we describe how the result of the PnP method can be interpreted as a solution to an equilibrium equation, allowing convergence analysis from the equilibrium perspective. Finally, we present illustrative examples of PnP methods applied to MRI image recovery.

摘要

磁共振成像(MRI)是一种非侵入性诊断工具,无需使用电离辐射就能提供出色的软组织对比度。然而,与其他临床成像方式(如CT或超声)相比,MRI的数据采集过程本质上较慢,这促使了欠采样的出现,进而推动了对从欠采样数据集中进行准确、高效重建方法的需求。在本文中,我们描述了“即插即用”(PnP)算法在MRI图像恢复中的应用。我们首先描述MRI中遇到的线性近似逆问题。然后我们回顾几种PnP方法,其统一的共性是将迭代调用去噪子程序作为一个更大的受优化启发算法的一步。接下来,我们描述如何将PnP方法的结果解释为一个平衡方程的解,从而允许从平衡角度进行收敛分析。最后,我们给出PnP方法应用于MRI图像恢复的示例。

相似文献

1
Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery.
IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.
2
MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.
3
On Plug-and-Play Regularization Using Linear Denoisers.
IEEE Trans Image Process. 2021;30:4802-4813. doi: 10.1109/TIP.2021.3075092. Epub 2021 May 7.
4
FREE-BREATHING CARDIOVASCULAR MRI USING A PLUG-AND-PLAY METHOD WITH LEARNED DENOISER.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1748-1751. doi: 10.1109/isbi45749.2020.9098453. Epub 2020 May 22.
5
6
Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
7
MRI recovery with self-calibrated denoisers without fully-sampled data.
MAGMA. 2025 Feb;38(1):53-66. doi: 10.1007/s10334-024-01207-1. Epub 2024 Oct 16.
8
Plug-and-Play Image Reconstruction Is a Convergent Regularization Method.
IEEE Trans Image Process. 2024;33:1476-1486. doi: 10.1109/TIP.2024.3361218. Epub 2024 Feb 21.
9
Constrained Plug-and-Play Priors for Image Restoration.
J Imaging. 2024 Feb 19;10(2):50. doi: 10.3390/jimaging10020050.
10
Sinogram upsampling using Primal-Dual UNet for undersampled CT and radial MRI reconstruction.
Neural Netw. 2023 Sep;166:704-721. doi: 10.1016/j.neunet.2023.08.004. Epub 2023 Aug 9.

引用本文的文献

1
FAST MULTI-CONTRAST MRI USING JOINT MULTISCALE ENERGY MODEL.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981204. Epub 2025 May 12.
2
ACCELERATING QUANTITATIVE MRI USING SUBSPACE MULTISCALE ENERGY MODEL (SS-MUSE).
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980741. Epub 2025 May 12.
3
CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping.
J Math Imaging Vis. 2025 Apr;67(2). doi: 10.1007/s10851-025-01236-y. Epub 2025 Apr 2.
4
Enhanced Partial Fourier MRI With Zero-Shot Deep Untrained Priors.
IEEE Access. 2024;12:182157-182170. doi: 10.1109/access.2024.3508761. Epub 2024 Nov 29.
5
Plug-and-Play Self-Supervised Denoising for Pulmonary Perfusion MRI.
Bioengineering (Basel). 2025 Jul 1;12(7):724. doi: 10.3390/bioengineering12070724.
6
Learning Task-Specific Strategies for Accelerated MRI.
IEEE Trans Comput Imaging. 2024;10:1040-1054. doi: 10.1109/tci.2024.3410521. Epub 2024 Jul 1.
7
Diffusion probabilistic generative models for accelerated, in-NICU permanent magnet neonatal MRI.
Magn Reson Med. 2025 Oct;94(4):1546-1562. doi: 10.1002/mrm.30585. Epub 2025 Jun 17.
9
Multi-Scale Energy (MuSE) framework for inverse problems in imaging.
IEEE Trans Comput Imaging. 2024;10:1250-1265. doi: 10.1109/tci.2024.3449101. Epub 2024 Aug 23.
10
Physics-driven Learned Deconvolution of Multi-spectral Cellular MRI with Radial Sampling.
Conf Rec Asilomar Conf Signals Syst Comput. 2023 Oct-Nov;2023:1453-1457. doi: 10.1109/ieeeconf59524.2023.10476927.

本文引用的文献

1
MODEL BASED IMAGE RECONSTRUCTION USING DEEP LEARNED PRIORS (MODL).
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:671-674. doi: 10.1109/isbi.2018.8363663. Epub 2018 May 24.
2
Optimization Methods for Magnetic Resonance Image Reconstruction: Key Models and Optimization Algorithms.
IEEE Signal Process Mag. 2020 Jan;37(1):33-40. doi: 10.1109/MSP.2019.2943645. Epub 2020 Jan 17.
3
Regularization by Denoising: Clarifications and New Interpretations.
IEEE Trans Comput Imaging. 2019 Mar;5(1):52-67. doi: 10.1109/TCI.2018.2880326. Epub 2018 Nov 9.
6
Deep learning for undersampled MRI reconstruction.
Phys Med Biol. 2018 Jun 25;63(13):135007. doi: 10.1088/1361-6560/aac71a.
7
Assessment of the generalization of learned image reconstruction and the potential for transfer learning.
Magn Reson Med. 2019 Jan;81(1):116-128. doi: 10.1002/mrm.27355. Epub 2018 May 17.
8
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.
9
Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.
IEEE Trans Med Imaging. 2017 May;36(5):1116-1128. doi: 10.1109/TMI.2017.2650960. Epub 2017 Jan 10.
10
Projected Iterative Soft-Thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging.
IEEE Trans Med Imaging. 2016 Sep;35(9):2130-2140. doi: 10.1109/TMI.2016.2550080. Epub 2016 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验