Suppr超能文献

基于深度学习的散斑模式分析用于低成本中风检测:一项基于体模的可行性研究。

Speckle pattern analysis with deep learning for low-cost stroke detection: a phantom-based feasibility study.

作者信息

Yosovich Avraham, Agdarov Sergey, Beiderman Yafim, Beiderman Yevgeny, Zalevsky Zeev

机构信息

Bar-Ilan University Faculty of Engineering and the Nanotechnology Center, Ramat-Gan, Israel.

Holon Institute of Technology, Faculty of Electrical and Electronics Engineering, Holon, Israel.

出版信息

J Biomed Opt. 2025 May;30(5):056003. doi: 10.1117/1.JBO.30.5.056003. Epub 2025 May 7.

Abstract

SIGNIFICANCE

Stroke is a leading cause of disability worldwide, necessitating rapid and accurate diagnosis to limit irreversible brain damage. However, many advanced imaging modalities (computerized tomography, magnetic resonance imaging) remain inaccessible in remote or resource-constrained settings due to high costs and logistical barriers.

AIM

We aim to evaluate the feasibility of a laser speckle-based technique, coupled with deep learning, for detecting simulated stroke conditions in a tissue phantom. We investigate whether speckle patterns can be leveraged to differentiate healthy from restricted flow states in arteries of varying diameters and depths.

APPROACH

Artificial arteries (3 to 6 mm diameters) were embedded at different depths (0 to 10 mm) within a skin-covered chicken tissue, to mimic blood-flow scenarios ranging from no flow (full occlusion) to high flow. A high-speed camera captured the secondary speckle patterns generated by laser illumination. These video sequences were fed into a three-dimensional convolutional neural network (X3D_M) to classify four distinct flow conditions.

RESULTS

The proposed method showed high classification accuracy, reaching 95% to 100% for larger vessels near the surface. Even for smaller or deeper arteries, detection remained robust ( in most conditions). The performance suggests that spatiotemporal features of speckle patterns can reliably distinguish varying blood-flow states.

CONCLUSIONS

Although tested on a tissue phantom, these findings highlight the potential of combining speckle imaging with deep learning for accessible, rapid stroke detection. Our next steps involve direct experiments targeting cerebral arteries, acknowledging that additional factors such as the skull's optical properties and the likely need for near-infrared illumination must be addressed before achieving true intracranial applicability. We also note that examining the carotid artery remains a valuable and practical step, given its superficial location and direct relevance to stroke risk.

摘要

意义

中风是全球残疾的主要原因,需要快速准确的诊断以限制不可逆的脑损伤。然而,由于成本高昂和后勤障碍,许多先进的成像方式(计算机断层扫描、磁共振成像)在偏远或资源有限的环境中仍然无法使用。

目的

我们旨在评估一种基于激光散斑的技术与深度学习相结合在组织模型中检测模拟中风情况的可行性。我们研究是否可以利用散斑图案来区分不同直径和深度的动脉中健康状态与血流受限状态。

方法

将人工动脉(直径3至6毫米)嵌入覆盖皮肤的鸡组织内不同深度(0至10毫米)处,以模拟从无血流(完全阻塞)到高血流的血流情况。高速相机捕捉激光照射产生的二次散斑图案。这些视频序列被输入到一个三维卷积神经网络(X3D_M)中,以对四种不同的血流状况进行分类。

结果

所提出的方法显示出高分类准确率,对于靠近表面的较大血管,准确率达到95%至100%。即使对于较小或较深的动脉,在大多数情况下检测仍然可靠。该性能表明散斑图案的时空特征可以可靠地区分不同的血流状态。

结论

尽管是在组织模型上进行测试,但这些发现突出了将散斑成像与深度学习相结合用于可及、快速中风检测的潜力。我们的下一步涉及针对脑动脉的直接实验,同时认识到在实现真正的颅内适用性之前,必须解决诸如颅骨光学特性以及可能需要近红外照明等其他因素。我们还指出,鉴于颈动脉位置表浅且与中风风险直接相关,检查颈动脉仍然是一个有价值且实际的步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d530/12058334/c10ac028364a/JBO-030-056003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验