Segal Natalya, Kalyuzhner Zeev, Agdarov Sergey, Beiderman Yafim, Beiderman Yevgeny, Zalevsky Zeev
Bar-Ilan University, Faculty of Engineering and the Nanotechnology Center, Ramat-Gan, Israel.
Holon Institute of Technology, Faculty of Electrical and Electronics Engineering, Holon, Israel.
J Biomed Opt. 2025 Jun;30(6):067001. doi: 10.1117/1.JBO.30.6.067001. Epub 2025 Jun 9.
Functional magnetic resonance imaging provides high spatial resolution but is limited by cost, infrastructure, and the constraints of an enclosed scanner. Portable methods such as functional near-infrared spectroscopy and electroencephalography improve accessibility but require physical contact with the scalp. Our speckle pattern imaging technique offers a remote, contactless, and low-cost alternative for monitoring cortical activity, enabling neuroimaging in environments where contact-based methods are impractical or MRI access is unfeasible.
We aim to develop a remote photonic technique for detecting human brain cortex activity by applying deep learning to the speckle pattern videos captured from specific brain cortex areas illuminated by a laser beam.
We enhance laser speckle pattern tracking with artificial intelligence (AI) to enable remote brain monitoring. In this study, a laser beam was projected onto Wernicke's area to detect brain responses to a clear and incomprehensible speech. The speckle pattern videos were analyzed using a convolutional long short-term memory-based deep neural network classifier.
The classifier distinguished brain responses to a clear and incomprehensible speech in unseen subjects, achieving a mean area under the receiver operating characteristic curve (area under the curve) of 0.94 for classifications based on at least 1 s of input.
This remote method for distinguishing brain responses has practical applications in brain function research, medical monitoring, sports, and real-life scenarios, particularly for individuals sensitive to scalp contact or headgear.
功能磁共振成像提供了高空间分辨率,但受到成本、基础设施以及封闭式扫描仪的限制。诸如功能近红外光谱和脑电图等便携式方法提高了可及性,但需要与头皮进行物理接触。我们的散斑图案成像技术为监测皮层活动提供了一种远程、非接触且低成本的替代方法,能够在基于接触的方法不实用或无法进行磁共振成像的环境中进行神经成像。
我们旨在开发一种远程光子技术,通过将深度学习应用于从特定脑皮层区域被激光束照射所捕获的散斑图案视频来检测人类脑皮层活动。
我们利用人工智能(AI)增强激光散斑图案跟踪,以实现远程脑监测。在本研究中,将激光束投射到韦尼克区,以检测大脑对清晰但难以理解的语音的反应。使用基于卷积长短期记忆的深度神经网络分类器对散斑图案视频进行分析。
该分类器能够区分未见过的受试者对清晰但难以理解的语音的大脑反应,基于至少1秒的输入进行分类时,在受试者工作特征曲线下的平均面积(曲线下面积)达到0.94。
这种区分大脑反应的远程方法在脑功能研究、医学监测、体育和现实生活场景中具有实际应用,特别是对于对头皮接触或头带敏感的个体。