Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2407971121. doi: 10.1073/pnas.2407971121. Epub 2024 Aug 7.
Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO, ion storage Co-MoS, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.
人工神经形态设备可以模拟树突整合、轴突并行传输,以及卓越的能量效率,从而促进高效的信息处理,为可穿戴电子设备带来巨大的潜力。然而,将这些电路集成到纺织品中以实现仿生信息感知、处理和控制运动反馈仍然是一个巨大的挑战。在这里,我们设计了一种由光响应 TiO2、离子存储 Co-MoS2 和离子传输层组成的准固态离子电子突触纤维 (ISF)。所得到的 ISF 实现了固有短期突触可塑性、飞焦级别的能量消耗以及转换化学/光学信号的能力。多个 ISF 交织成合成神经织物,允许同时传播不同的光学信号以传输并行信息。重要的是,具有多个输入电极的 ISF 表现出时空信息整合。作为概念验证,构建了基于纺织品的多路复用神经形态传感器 - 运动系统,将突触纤维与人工纤维肌肉连接起来,实现前神经元传感信息整合、并行传输和后神经元信息输出,以控制纤维肌肉的协调运动。所提出的纤维系统在可穿戴电子设备、软机器人和生物医学工程领域具有巨大的应用前景。