Suppr超能文献

基于深度学习的白血病相关白细胞语义分割

Deep learning based semantic segmentation of leukemia effected white blood cell.

作者信息

Jan Zahoor, Shabir Muhammad, Farman Haleem, Rahman Afzal, M Nasralla Moustafa

机构信息

Department of Computer Science, Islamia College University, Peshawar, Pakistan.

Smart Systems Engineering Laboratory, Department of Communications and Networks Engineering, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2025 May 8;20(5):e0320596. doi: 10.1371/journal.pone.0320596. eCollection 2025.

Abstract

Medical image segmentation has numerous applications in diagnosing different diseases. Various types of diseases are found in white blood and Red blood cells. This paper represents the segmentation of WBCs from blood smear images. It is a complex and challenging task due to the frequent overlapping and variants in size and shape of WBCs with each other and RBCs. This overlapping is due to the rough border of the immature cells. The paper describes a new approach to WBC segmentation using UNet++, the marker watershed algorithm, and Neural Ordinary Differential Equations (ODE). This technique uses UNet++ for pre-segmentation, followed by the marker watershed method, which has been integrated using ODE to deepen the segmentation process. This novel integration enhances clinical applications in automated blood cell analysis, diagnostic imaging, and disease monitoring, improving accuracy and robustness. The ODE is used after the convolution operation to reduce the error at each step, preventing the massive propagation of error in the forward and the backpropagation. The White blood cells are segmented from the input smear images using ALL_IDB1 and ALL_IDB2 datasets, which are further used in the experiment section. UNet ++ is used to generate the pre-segmented probabilistic grayscale images. Some white blood cells are connected and make groups appearing in the grayscale images. These groups of WBCs are separated using a technique called the marker watershed, which gives us the final segmented result. The experimentation results show that the mean intersection over union (Jaccard method), the Dice similarity coefficient, and the mean pixel accuracy are 97.73%, 98.36%, and 98.97%, respectively. The structure and size of the white blood cells vary from red blood cells and platelets, which makes this work different from others. Furthermore, the combination of UNet++, marker watershed, and Neural Ordinary Differential Equation makes the proposed system unique from existing systems. This work can be further investigated to reduce computational complexity and memory space for optimizing deployment on low-resource devices, such as smart healthcare systems. Techniques like model pruning, quantization, or learned information distillation might be explored to create a lightweight version of the model without much loss in accuracy. Such developments would make possible mass uses of automated white blood cell segmentation in portable, low-cost health devices for point-of-care remote diagnostics and monitoring.

摘要

医学图像分割在诊断不同疾病方面有众多应用。在白细胞和红细胞中发现了各种类型的疾病。本文介绍了从血涂片图像中分割白细胞的方法。由于白细胞彼此之间以及与红细胞在大小和形状上频繁重叠且存在变体,这是一项复杂且具有挑战性的任务。这种重叠是由于未成熟细胞的边界粗糙所致。本文描述了一种使用UNet++、标记分水岭算法和神经常微分方程(ODE)进行白细胞分割的新方法。该技术使用UNet++进行预分割,随后是标记分水岭方法,该方法已通过ODE进行集成以深化分割过程。这种新颖的集成增强了在自动血细胞分析、诊断成像和疾病监测中的临床应用,提高了准确性和鲁棒性。ODE在卷积操作之后使用,以减少每一步的误差,防止误差在正向和反向传播中大量传播。使用ALL_IDB1和ALL_IDB2数据集从输入的涂片图像中分割白细胞,这些数据集在实验部分进一步使用。UNet++用于生成预分割的概率灰度图像。一些白细胞相互连接并在灰度图像中形成群组。使用一种称为标记分水岭的技术将这些白细胞群组分开,从而得到最终的分割结果。实验结果表明,平均交并比(Jaccard方法)、Dice相似系数和平均像素准确率分别为97.73%、98.36%和98.97%。白细胞的结构和大小与红细胞和血小板不同,这使得这项工作与其他工作有所不同。此外,UNet++、标记分水岭和神经常微分方程的结合使所提出的系统与现有系统不同。可以进一步研究这项工作以降低计算复杂度和内存空间,以便在低资源设备(如智能医疗系统)上进行优化部署。可以探索模型剪枝、量化或学习信息蒸馏等技术,以创建一个在准确性损失不大的情况下的轻量级模型版本。这样的发展将使自动白细胞分割在便携式、低成本健康设备中用于即时远程诊断和监测成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验