Derayatifar Mahdi, Habibi Mohsen, Bhat Rama, Packirisamy Muthukumaran
Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
Department of Mechanical and Aerospace Engineering, University of California at Davis, Davis, CA, USA.
Nat Commun. 2024 Aug 6;15(1):6691. doi: 10.1038/s41467-024-50923-8.
Direct sound printing (DSP), an alternative additive manufacturing process driven by sonochemical polymerization, has traditionally been confined to a single acoustic focal region, resulting in a voxel-by-voxel printing approach. To overcome this limitation, we introduce holographic direct sound printing (HDSP), where acoustic holograms, storing cross-sectional images of the desired parts, pattern acoustic waves to induce regional cavitation bubbles and on-demand regional polymerization. HDSP outperforms DSP in terms of printing speed by one order of magnitude and yields layerless printed structures. In our HDSP implementation, the hologram remains stationary while the printing platform moves along a three-dimensional path using a robotic arm. We present sono-chemiluminescence and high-speed imaging experiments to thoroughly investigate HDSP and demonstrate its versatility in applications such as remote ex-vivo in-body printing and complex robot trajectory planning. We showcase multi-object and multi-material printing and provide a comprehensive process characterization, including the effects of hologram design and manufacturing on the HDSP process, polymerization progression tracking, porosity tuning, and robotic trajectory computation. Our HDSP method establishes the integration of acoustic holography in DSP and related applications.
直接声打印(DSP)是一种由声化学聚合驱动的增材制造工艺,传统上它被限制在单个声学聚焦区域,导致逐体素打印方法。为克服这一限制,我们引入了全息直接声打印(HDSP),其中声学全息图存储所需部件的横截面图像,对声波进行图案化处理以诱导区域空化气泡和按需区域聚合。HDSP在打印速度方面比DSP快一个数量级,并能产生无层打印结构。在我们的HDSP实现中,全息图保持静止,而打印平台使用机械臂沿三维路径移动。我们展示了声致化学发光和高速成像实验,以全面研究HDSP,并证明其在远程体外体内打印和复杂机器人轨迹规划等应用中的多功能性。我们展示了多物体和多材料打印,并提供了全面的工艺表征,包括全息图设计和制造对HDSP工艺的影响、聚合过程跟踪、孔隙率调整和机器人轨迹计算。我们的HDSP方法实现了声学全息术在DSP及相关应用中的集成。