Luo Junming, Guo Xin, Zheng Yijing, Yang Zhuoyuan, Pei Si-Ying, Rao Run-Qing, Ai ZhiYing, Zou Fang
Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China.
Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China.
Free Radic Biol Med. 2025 Aug 16;236:41-56. doi: 10.1016/j.freeradbiomed.2025.05.385. Epub 2025 May 6.
The identification of biomarkers for early diagnosis and monitoring the progression of Type 1 Diabetes (T1DM) is essential for improving disease management. This study integrates multi-omics data with machine learning to identify antioxidant stress proteins in serum as potential biomarkers. Serum samples from mice treated with varying doses of streptozotocin (STZ) and human transcriptomic data from the gene expression omnibus (GEO) database were analyzed using weighted gene co-expression network analysis (WGCNA). Proteomic analysis of 25 T1DM and 25 healthy controls using LC-MS/MS revealed 33 differentially expressed proteins enriched in oxidative stress pathways. Machine learning algorithms, including Random Forest and SVM-RFE, identified five key proteins: GPX3, GSTP1, PRDX6, SOD1, and MSRB2. GPX3 demonstrated the highest diagnostic value, with a significant correlation to clinical parameters such as HbA1c and fasting plasma glucose. Functional validation showed GPX3 overexpression protected pancreatic β-cells from HO-induced oxidative damage and alleviated symptoms and pathological changes in T1DM mice. These results suggest that GPX3 is a promising biomarker for diagnosing and tracking T1DM progression, offering new insights into oxidative stress management in T1DM.
鉴定用于早期诊断和监测1型糖尿病(T1DM)进展的生物标志物对于改善疾病管理至关重要。本研究将多组学数据与机器学习相结合,以鉴定血清中的抗氧化应激蛋白作为潜在生物标志物。使用加权基因共表达网络分析(WGCNA)分析了用不同剂量链脲佐菌素(STZ)处理的小鼠的血清样本以及来自基因表达综合数据库(GEO)的人类转录组数据。使用LC-MS/MS对25名T1DM患者和25名健康对照进行蛋白质组分析,发现33种差异表达蛋白富集于氧化应激途径。包括随机森林和支持向量机递归特征消除(SVM-RFE)在内的机器学习算法鉴定出了5种关键蛋白:谷胱甘肽过氧化物酶3(GPX3)、谷胱甘肽S-转移酶P1(GSTP1)、过氧化物还原酶6(PRDX6)、超氧化物歧化酶1(SOD1)和甲硫氨酸亚砜还原酶B2(MSRB2)。GPX3显示出最高的诊断价值,与糖化血红蛋白(HbA1c)和空腹血糖等临床参数显著相关。功能验证表明,GPX3过表达可保护胰腺β细胞免受过氧化氢(HO)诱导的氧化损伤,并减轻T1DM小鼠的症状和病理变化。这些结果表明,GPX3是诊断和追踪T1DM进展的一种有前景的生物标志物,为T1DM的氧化应激管理提供了新的见解。