Suppr超能文献

一种用于分离代谢组学时间进程数据中系统偏差和噪声的综合模型——一种非线性B样条混合效应方法。

A Comprehensive Model for Separating Systematic Bias and Noise in Metabolomic Timecourse Data-A Nonlinear B-Spline Mixed-Effects Approach.

作者信息

Isaac Kathy Sharon, Sokolenko Stanislav

机构信息

Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada.

出版信息

Biotechnol Bioeng. 2025 Aug;122(8):2063-2071. doi: 10.1002/bit.29008. Epub 2025 May 8.

Abstract

The simultaneous detection of tens to hundreds of metabolites in a single metabolomic timecourse sample offers a unique but often unrealized opportunity for quantification validation. An individual timecourse fit for each metabolite fundamentally convolutes measurement noise with systematic sample bias (stemming from, for example, variable sample dilution, extraction, and normalization). However, since systematic bias, by its definition, influences all metabolites within a sample in a similar fashion, it can be identified and corrected through the simultaneous fit of all detected metabolites in a single timecourse model. This study presents a nonlinear B-spline mixed-effects model as a convenient formulation capable of estimating and correcting such bias. The proposed model was successfully applied to real cell culture data and validated using simulated timecourse data perturbed with varying degrees of random noise and systematic bias. The model was able to accurately correct systematic bias of 3%-10% to within 0.5% on average for typical data. An R package for the correction model has been developed to facilitate model adoption and use. The proposed nonlinear B-spline mixed-effects formulation is general enough for application to a broad range of research areas beyond just cell culture metabolomics.

摘要

在单个代谢组学时间进程样本中同时检测数十至数百种代谢物,为定量验证提供了独特但往往未被充分利用的机会。针对每种代谢物单独进行时间进程拟合,会将测量噪声与系统性样本偏差(例如,源于可变的样本稀释、提取和归一化)从根本上进行卷积。然而,由于系统性偏差根据其定义以相似方式影响样本中的所有代谢物,因此可以通过在单个时间进程模型中对所有检测到的代谢物进行同时拟合来识别和校正。本研究提出了一种非线性B样条混合效应模型,作为一种能够估计和校正此类偏差的便捷公式。所提出的模型已成功应用于真实的细胞培养数据,并使用受不同程度随机噪声和系统性偏差干扰的模拟时间进程数据进行了验证。对于典型数据,该模型能够将3% - 10%的系统性偏差平均准确校正到0.5%以内。已开发出用于校正模型的R包,以促进模型的采用和使用。所提出的非线性B样条混合效应公式具有足够的通用性,可应用于除细胞培养代谢组学之外的广泛研究领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验