Suppr超能文献

预测嗜铬细胞瘤/副神经节瘤手术难度的机器学习模型:一项回顾性队列研究。

Machine Learning Model for Predicting Pheochromocytomas/Paragangliomas Surgery Difficulty: A Retrospective Cohort Study.

作者信息

Zhang Yubing, Guo Qikun, Li Shurong, Zhang Zhiqiang, Xiang Fangzheng, Su Wenhui, Wu Yukun, Yu Jiajie, Xie Yun, Luo Cheng, Zheng Fufu

机构信息

Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.

Department of Interventional Radiology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.

出版信息

Ann Surg Oncol. 2025 May 9. doi: 10.1245/s10434-025-17346-1.

Abstract

OBJECTIVE

We aimed to develop a machine learning (ML) model to preoperatively predict surgical difficulty for pheochromocytomas and paragangliomas (PPGLs) using clinical and radiomic features.

METHODS

In this study, 212 patients with pathologically confirmed PPGLs were retrospectively enrolled and divided into training (n = 148) and validation cohorts (n = 64). Seven ML models (Classification and Regression Tree, K-Nearest Neighbors, Least Absolute Shrinkage and Selection Operator, Naïve Bayes, Random Forest, Support Vector Machine (SVM), and Extreme Gradient Boosting) were trained using clinical parameters alone or combined with radiomics. Model performance was evaluated and compared through accuracy, sensitivity, specificity, F1 score, area under the curve (AUC), calibration curves, and decision curve analysis. Through comprehensive assessment, the optimal integrated model (clinical + radiomics) was identified and its predictive efficacy was subsequently compared with that of the clinical parameter model. Finally, SHapley Additive exPlanations (SHAP) was applied to enhance the interpretability of the optimal model by visualizing feature contributions.

RESULTS

Among all integrated models, the SVM model exhibited the most prominent performance, achieving AUC values of 0.96 in the training cohort and 0.85 in the validation cohort, while demonstrating statistically significant superiority over the clinical parameter model (p < 0.05). The SHAP analysis revealed that radiomic signature (Rad score) exerted the most substantial influence on the predictive outcomes, with age, body mass index, maximum tumor diameter, and preoperative heart rate also demonstrating statistically significant contributions to the model predictions.

CONCLUSION

The SVM model integrating clinical and radiomic features effectively predicts PPGL surgical difficulty, aiding preoperative risk stratification and personalized surgical planning to reduce operative risks.

摘要

目的

我们旨在开发一种机器学习(ML)模型,利用临床和影像组学特征术前预测嗜铬细胞瘤和副神经节瘤(PPGLs)的手术难度。

方法

在本研究中,回顾性纳入212例经病理证实的PPGLs患者,并将其分为训练组(n = 148)和验证组(n = 64)。使用单独的临床参数或结合影像组学对七个ML模型(分类与回归树、K近邻、最小绝对收缩和选择算子、朴素贝叶斯、随机森林、支持向量机(SVM)和极端梯度提升)进行训练。通过准确性、敏感性、特异性、F1评分、曲线下面积(AUC)、校准曲线和决策曲线分析对模型性能进行评估和比较。通过综合评估,确定最佳综合模型(临床+影像组学),并随后将其预测效能与临床参数模型进行比较。最后,应用SHapley加法解释(SHAP)通过可视化特征贡献来增强最佳模型的可解释性。

结果

在所有综合模型中,SVM模型表现最为突出,在训练组中的AUC值为0.96,在验证组中的AUC值为0.85,同时显示出在统计学上显著优于临床参数模型(p < 0.05)。SHAP分析显示,影像组学特征(Rad评分)对预测结果的影响最大,年龄﹑体重指数﹑最大肿瘤直径和术前心率对模型预测也显示出统计学上的显著贡献。

结论

整合临床和影像组学特征的SVM模型能有效预测PPGL手术难度,有助于术前风险分层和个性化手术规划,以降低手术风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验