Suppr超能文献

骨矿物质镶嵌:水合和脱水状态下体积填充矿化模式的原子力显微镜观察

Bone mineral tessellation: Atomic force microscopy of the volume-filling mineralization pattern in hydrated and dehydrated states.

作者信息

Nelea Valentin, Ittah Eran, McKee Marc D, Reznikov Natalie

机构信息

Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, 3640 Rue University, Montréal, H3A 2A7, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Ave, Montréal, H3A 1G1, Québec, Canada.

Department of Bioengineering, Faculty of Engineering, McGill University, 3480 Rue University, Montréal, H3A 0E9, Québec, Canada.

出版信息

Acta Biomater. 2025 Jun 15;200:251-264. doi: 10.1016/j.actbio.2025.05.016. Epub 2025 May 7.

Abstract

Bone is a specialized hard connective tissue with a hierarchical organization of its components. At the micrometer scale, mineral entities of roughly uniform shape tessellate in 3D within an organized, crosslinked and hydrated scaffold of mostly type I collagen. Here we report on the visualization by atomic force microscopy (AFM) of the volume-filling mineralization pattern of tesselles in lamellar bone, in hydrated and dehydrated conditions (for human, bovine, porcine and ovine bone). Microscale mineral tessellation was clearly visible when bulk lamellar bone was hydrated, whereas dry bone showed submicron nanogranularity instead of tesselle boundaries. Time-lapse AFM experiments of gradual passive dehydration of bone revealed topographical changes for all bone species with the tessellation appearance vanishing after two weeks of dehydration. AFM adhesion forces dropped within the first days of dehydration in all bone species, indicating that surface stickiness is more sensitive to passive dehydration than is stiffness. Irrespective of the bone species, AFM stiffness measurements found that hydrated bone was more compliant than dehydrated bone. AFM Young's modulus measurements of more recently formed osteonal lamellae intersecting with older interstitial lamellae found that the modulus in both hydrated and dehydrated states was lower in the osteonal lamellae. Modelling of water sorption to the surface of stochiometric hydroxyapatite showed that the presence of rigid hydration shells delineates the tesselle boundaries and smoothens the nanogranularity, confirming the AFM observations. This study highlights the importance of regarding water as a fundamental architecting component of bone. STATEMENT OF SIGNIFICANCE: Here we report on visualization of the mineral tessellation pattern in lamellar bone by atomic force microscopy (AFM) in hydrated and dehydrated conditions. We show that lamellar bone (human, bovine, porcine and ovine) contains a universal volume-filling mineral tessellation. The visibility of the tessellation pattern by AFM strongly depends on the state of bone hydration. Modelling water sorption to the surface of stochiometric hydroxyapatite indicated that mechanical and morphological characteristics of lamellar bone (e.g., stiffness, adhesion, contours of tesselle boundaries) can be attributed to the presence of rigid hydration shells. This study highlights the importance of water incorporation as a fundamental component of bone, on par with the mineral and the organic extracellular matrix.

摘要

骨是一种具有分层组织结构的特殊硬结缔组织。在微米尺度上,形状大致均匀的矿物质实体在主要由I型胶原蛋白构成的有组织、交联且水合的支架内呈三维镶嵌排列。在此,我们报告了通过原子力显微镜(AFM)对板层骨中镶嵌体在水合和脱水条件下(针对人、牛、猪和羊的骨)的体积填充矿化模式的可视化研究。当大块板层骨水合时,微观尺度的矿物质镶嵌清晰可见,而干燥的骨则呈现亚微米级的纳米颗粒状而非镶嵌体边界。对骨逐渐被动脱水的延时AFM实验表明,所有骨种类都出现了地形变化,脱水两周后镶嵌体外观消失。在所有骨种类中,脱水的头几天AFM粘附力下降,这表明表面粘性比硬度对被动脱水更敏感。无论骨的种类如何,AFM硬度测量发现水合骨比脱水骨更具柔韧性。对与较老的间质板层相交的较新形成的骨单位板层进行AFM杨氏模量测量发现,在水合和脱水状态下,骨单位板层的模量都较低。对化学计量比的羟基磷灰石表面水吸附的建模表明,刚性水合壳的存在划定了镶嵌体边界并使纳米颗粒状变得平滑,这证实了AFM的观察结果。本研究强调了将水视为骨的基本构建成分的重要性。重要性声明:在此我们报告了通过原子力显微镜(AFM)对水合和脱水条件下板层骨中矿物质镶嵌模式的可视化研究。我们表明板层骨(人、牛、猪和羊)包含一种普遍的体积填充矿物质镶嵌。AFM对镶嵌模式的可见性强烈依赖于骨的水合状态。对化学计量比的羟基磷灰石表面水吸附的建模表明,板层骨的机械和形态特征(如硬度、粘附力、镶嵌体边界轮廓)可归因于刚性水合壳的存在。本研究强调了水作为骨的基本成分的重要性,与矿物质和有机细胞外基质相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验