Suppr超能文献

用于分析冲击载荷诱导的关节软骨细胞损伤、随后的蛋白聚糖损失以及抗氧化治疗效果的力学生物化学有限元模型。

Mechanobiochemical finite element model to analyze impact-loading-induced cell damage, subsequent proteoglycan loss, and anti-oxidative treatment effects in articular cartilage.

作者信息

Kosonen Joonas P, Eskelinen Atte S A, Orozco Gustavo A, Coleman Mitchell C, Goetz Jessica E, Anderson Donald D, Grodzinsky Alan J, Tanska Petri, Korhonen Rami K

机构信息

Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.

Departments of Orthopedics and Rehabilitation and Biomedical Engineering, University of Iowa, Iowa, USA.

出版信息

Biomech Model Mechanobiol. 2025 Aug;24(4):1191-1206. doi: 10.1007/s10237-025-01961-8. Epub 2025 May 10.

Abstract

Joint trauma often leads to articular cartilage degeneration and post-traumatic osteoarthritis (PTOA). Pivotal determinants include trauma-induced excessive tissue strains that damage cartilage cells. As a downstream effect, these damaged cells can trigger cartilage degeneration via oxidative stress, cell death, and proteolytic tissue degeneration. N-acetylcysteine (NAC) has emerged as an antioxidant capable of inhibiting oxidative stress, cell death, and cartilage degeneration post-impact. However, the temporal effects of NAC are not fully understood and remain difficult to assess solely by physical experiments. Thus, we developed a computational finite element analysis framework to simulate a drop-tower impact of cartilage in Abaqus, and subsequent oxidative stress-related cell damage, and NAC treatment upon cartilage proteoglycan content in Comsol Multiphysics, based on prior ex vivo experiments. Model results provide evidence that immediate NAC treatment can reduce proteoglycan loss by mitigating oxidative stress, cell death (improved proteoglycan biosynthesis), and enzymatic proteoglycan depletion. Our simulations also indicate that delayed NAC treatment may not inhibit cartilage proteoglycan loss despite reduced cell death after impact. These results enhance understanding of the temporal effects of impact-related cell damage and treatment that are critical for the development of effective treatments for PTOA. In the future, our modeling framework could increase understanding of time-dependent mechanisms of oxidative stress and downstream effects in injured cartilage and aid in developing better treatments to mitigate PTOA progression.

摘要

关节创伤常导致关节软骨退变和创伤后骨关节炎(PTOA)。关键决定因素包括创伤引起的过度组织应变,这种应变会损伤软骨细胞。作为下游效应,这些受损细胞可通过氧化应激、细胞死亡和蛋白水解性组织退变引发软骨退变。N-乙酰半胱氨酸(NAC)已成为一种抗氧化剂,能够抑制撞击后的氧化应激、细胞死亡和软骨退变。然而,NAC的时间效应尚未完全了解,仅通过物理实验仍难以评估。因此,我们基于先前的体外实验,开发了一个计算有限元分析框架,在Abaqus中模拟软骨的落塔撞击,以及随后在Comsol Multiphysics中模拟与氧化应激相关的细胞损伤和NAC对软骨蛋白聚糖含量的处理。模型结果表明,立即进行NAC处理可通过减轻氧化应激、细胞死亡(改善蛋白聚糖生物合成)和酶促蛋白聚糖消耗来减少蛋白聚糖损失。我们的模拟还表明,尽管撞击后细胞死亡减少,但延迟进行NAC处理可能无法抑制软骨蛋白聚糖损失。这些结果加深了对撞击相关细胞损伤和治疗的时间效应的理解,这对于开发有效的PTOA治疗方法至关重要。未来,我们的建模框架可以增进对损伤软骨中氧化应激的时间依赖性机制及其下游效应的理解,并有助于开发更好的治疗方法来减轻PTOA的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50f3/12246027/156af86ad4c6/10237_2025_1961_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验