Suppr超能文献

DICED(疾病状态特有的已识别切割位点数据库):术语组学/降解组学的可搜索网络界面。

DICED (Database of Identified Cleavage Sites Endemic to Diseases States): A Searchable Web Interface for Terminomics/Degradomics.

作者信息

Joshi Jayadev, Bhutada Sumit, Martin Daniel R, Guzowski Joyce, Blankenberg Daniel, Apte Suneel S

机构信息

Center for Computational Life Sciences, Cleveland Clinic Research, Cleveland, Ohio, USA.

Department of Biomedical Engineering, Cleveland Clinic Research, Cleveland, Ohio, USA.

出版信息

Proteomics. 2025 May 12;25(13):e202500007. doi: 10.1002/pmic.202500007.

Abstract

Proteolysis is an irreversible posttranslational modification with immense biological impact. Owing to its high disease significance, there is growing interest in investigating proteolysis on the proteome scale, termed degradomics. We developed 'Database of Identified Cleavage sites Endemic to Disease states' (DICED; https://diced.lerner.ccf.org/), as a searchable knowledgebase to promote collaboration and knowledge sharing in degradomics. DICED was designed and constructed using Python, JavaScript, HTML, and PostgreSQL. Django (https://www.djangoproject.com) was chosen as the primary framework for its security features and support for agile development. DICED can be utilized on major web browsers and operating systems for easy access to high-throughput mass spectrometry-identified cleaved protein termini. The data was obtained using N-terminomics, comprising N-terminal protein labeling, labeled peptide enrichment, mass spectrometry and positional peptide annotation. The DICED database contains experimentally derived N-terminomics peptide datasets from tissues, diseases, or digests of tissue protein libraries using individual proteases and is searchable using UniProt ID, protein name, gene symbol or up to 100 peptide sequences. The tabular output format can be exported as a CSV file. Although DICED presently accesses data from a single laboratory, it is freely available as a Galaxy tool and the underlying database is scalable, permitting addition of new datasets and features.

摘要

蛋白质水解是一种具有巨大生物学影响的不可逆翻译后修饰。由于其在疾病方面的高度重要性,人们对在蛋白质组规模上研究蛋白质水解(即降解组学)的兴趣与日俱增。我们开发了“疾病状态特有的已鉴定切割位点数据库”(DICED;https://diced.lerner.ccf.org/),作为一个可搜索的知识库,以促进降解组学领域的合作与知识共享。DICED是使用Python、JavaScript、HTML和PostgreSQL设计并构建的。选择Django(https://www.djangoproject.com)作为主要框架是因为其安全特性以及对敏捷开发的支持。DICED可在主流网页浏览器和操作系统上使用,以便轻松访问高通量质谱鉴定的切割蛋白质末端。数据是通过N端蛋白质组学获得的,包括N端蛋白质标记、标记肽富集、质谱分析和定位肽注释。DICED数据库包含来自组织、疾病或使用单个蛋白酶的组织蛋白质文库消化产物的实验性N端蛋白质组学肽数据集,可使用UniProt ID、蛋白质名称、基因符号或多达100个肽序列进行搜索。表格输出格式可以导出为CSV文件。尽管DICED目前只能访问单个实验室的数据,但它作为Galaxy工具是免费可用的,并且基础数据库具有可扩展性,允许添加新的数据集和功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0506/12246766/47360d285571/PMIC-25-e202500007-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验