Suppr超能文献

磁共振成像的表面线圈强度校正

SURFACE COIL INTENSITY CORRECTION FOR MRI.

作者信息

Lei Xuan, Schniter Philip, Chen Chong, Sultan Muhammad Ahmad, Ahmad Rizwan

机构信息

The Ohio State University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635382. Epub 2024 Aug 22.

Abstract

Modern MRI scanners utilize one or more arrays of small receive-only coils to collect k-space data. The sensitivity maps of the coils, when estimated using traditional methods, differ from the true sensitivity maps, which are generally unknown. Consequently, the reconstructed MR images exhibit undesired spatial variation in intensity. These intensity variations can be at least partially corrected using pre-scan data. In this work, we propose an intensity correction method that utilizes pre-scan data. For demonstration, we apply our method to a digital phantom, as well as to cardiac MRI data collected from a commercial scanner by Siemens Healthineers. The code is available at https://github.com/OSU-MR/SCC.

摘要

现代磁共振成像(MRI)扫描仪使用一个或多个仅用于接收的小型线圈阵列来收集k空间数据。当使用传统方法估计线圈的灵敏度图时,其与通常未知的真实灵敏度图不同。因此,重建的MR图像在强度上呈现出不期望的空间变化。这些强度变化可以使用预扫描数据至少部分地校正。在这项工作中,我们提出了一种利用预扫描数据的强度校正方法。为了进行演示,我们将我们的方法应用于数字模型以及从西门子医疗公司的商用扫描仪收集的心脏MRI数据。代码可在https://github.com/OSU-MR/SCC获取。

相似文献

1
SURFACE COIL INTENSITY CORRECTION FOR MRI.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635382. Epub 2024 Aug 22.
3
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

引用本文的文献

2
Groupwise image registration with edge-based loss for low-SNR cardiac MRI.
Magn Reson Med. 2025 Sep;94(3):1257-1268. doi: 10.1002/mrm.30486. Epub 2025 May 12.
3
DEEP IMAGE PRIOR WITH STRUCTURED SPARSITY (DISCUS) FOR DYNAMIC MRI RECONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635579. Epub 2024 Aug 22.

本文引用的文献

1
ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA.
Magn Reson Med. 2014 Mar;71(3):990-1001. doi: 10.1002/mrm.24751.
2
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
4
Adaptive reconstruction of phased array MR imagery.
Magn Reson Med. 2000 May;43(5):682-90. doi: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g.
5
SENSE: sensitivity encoding for fast MRI.
Magn Reson Med. 1999 Nov;42(5):952-62.
6
Intensity correction of phased-array surface coil images.
Magn Reson Med. 1996 Apr;35(4):585-90. doi: 10.1002/mrm.1910350419.
7
Local histogram correction of MRI spatially dependent image pixel intensity nonuniformity.
J Magn Reson Imaging. 1996 May-Jun;6(3):519-28. doi: 10.1002/jmri.1880060316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验