Suppr超能文献

用于动态磁共振成像重建的具有结构化稀疏性的深度图像先验(DISCUS)

DEEP IMAGE PRIOR WITH STRUCTURED SPARSITY (DISCUS) FOR DYNAMIC MRI RECONSTRUCTION.

作者信息

Sultan Muhammad Ahmad, Chen Chong, Liu Yingmin, Lei Xuan, Ahmad Rizwan

机构信息

The Ohio State University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635579. Epub 2024 Aug 22.

Abstract

High-quality training data are not always available in dynamic MRI. To address this, we propose a self-supervised deep learning method called deep image prior with structured sparsity (DISCUS) for reconstructing dynamic images. DISCUS is inspired by deep image prior (DIP) and recovers a series of images through joint optimization of network parameters and input code vectors. However, DISCUS additionally encourages group sparsity on frame-specific code vectors to discover the low-dimensional manifold that describes temporal variations across frames. Compared to prior work on manifold learning, DISCUS does not require specifying the manifold dimensionality. We validate DISCUS using three numerical studies. In the first study, we simulate a dynamic Shepp-Logan phantom with frames undergoing random rotations, translations, or both, and demonstrate that DISCUS can discover the dimensionality of the underlying manifold. In the second study, we use data from a realistic late gadolinium enhancement (LGE) phantom to compare DISCUS with compressed sensing (CS) and DIP, and to demonstrate the positive impact of group sparsity. In the third study, we use retrospectively undersampled single-shot LGE data from five patients to compare DISCUS with CS reconstructions. The results from these studies demonstrate that DISCUS outperforms CS and DIP, and that enforcing group sparsity on the code vectors helps discover true manifold dimensionality and provides additional performance gain.

摘要

在动态磁共振成像(MRI)中,高质量的训练数据并不总是可用的。为了解决这个问题,我们提出了一种名为具有结构稀疏性的深度图像先验(DISCUS)的自监督深度学习方法,用于重建动态图像。DISCUS受到深度图像先验(DIP)的启发,通过联合优化网络参数和输入编码向量来恢复一系列图像。然而,DISCUS还额外鼓励在特定帧的编码向量上进行组稀疏性,以发现描述跨帧时间变化的低维流形。与先前关于流形学习的工作相比,DISCUS不需要指定流形维度。我们使用三项数值研究对DISCUS进行了验证。在第一项研究中,我们模拟了一个动态的Shepp-Logan体模,其帧经历随机旋转、平移或两者兼有,并证明DISCUS可以发现底层流形的维度。在第二项研究中,我们使用来自真实的延迟钆增强(LGE)体模的数据,将DISCUS与压缩感知(CS)和DIP进行比较,并证明组稀疏性的积极影响。在第三项研究中,我们使用五名患者的回顾性欠采样单次激发LGE数据,将DISCUS与CS重建进行比较。这些研究的结果表明,DISCUS优于CS和DIP,并且在编码向量上强制进行组稀疏性有助于发现真正的流形维度,并提供额外的性能提升。

相似文献

9
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

1
SURFACE COIL INTENSITY CORRECTION FOR MRI.磁共振成像的表面线圈强度校正
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635382. Epub 2024 Aug 22.
3
Time-Dependent Deep Image Prior for Dynamic MRI.时变深度图像先验在动态 MRI 中的应用。
IEEE Trans Med Imaging. 2021 Dec;40(12):3337-3348. doi: 10.1109/TMI.2021.3084288. Epub 2021 Nov 30.
4
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
5
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.
6
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验