Suppr超能文献

通过抑制Ag85复合蛋白进行结核病的计算药物再利用。

Computational drug repurposing for tuberculosis by inhibiting Ag85 complex proteins.

作者信息

Iskandar Israini W, Nurhasanah Astutiati, Hatta Mohammad, Hamid Firdaus, Handayani Irda, Chaera Ummi, Yusriyyah Andi A, Jamaluddin Balqis D, Zaenab St, Hidayah Najdah, Karimah Nihayatul, Permana Andi D, Massi Muhammad N

机构信息

Master Program of Biomedical Science, Postgraduate School, Universitas Hasanuddin, Makassar, Indonesia.

Research and Innovation Agency (BRIN), Banten, Indonesia.

出版信息

Narra J. 2025 Apr;5(1):e1130. doi: 10.52225/narra.v5i1.1130. Epub 2025 Jan 17.

Abstract

Tuberculosis (TB) remains a significant and deadly infection among pulmonary diseases caused by a highly adaptive bacterium. The ability of to evade certain drugs has been linked to its unique structure, particularly in the cell envelope, where the Ag85 complex proteins play an essential role in this part. The aim of this study was to utilize a drug repurposing strategy targeting the Ag85 complex proteins. This study utilized a computational approach with 120 selected drugs experimentally identified to inhibit Tuberculosis. A virtual screening molecular docking with Autodock Vina was used to filter the compounds and identify the strong binders to the Ag85 Complex. Molecular dynamics simulations employed the Gromacs Packages to evaluate the stability of each complex, including root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (RoG). Additionally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessments were conducted to gather more information about the drug-likeness of each hit compound. Three compounds, selamectin, imatinib, and eltrombopag were selected as potential drugs repurposed to inhibit the activity of the Ag85 complex enzyme, with binding affinities ranging between -10.560 kcal/mol and -11.422 kcal/mol. The MD simulation within 100 ns (3 replicas) showed that the average RMSD of each Ag85A complex was 0.15 nm-0.16 nm, RMSF was 0.09 nm-0.10 nm, and RoG was 1.80 nm-1.81 nm. For Ag85B, the average RMSD was 1.79 nm-1.80 nm, RMSF was 0.08 nm-0.09 nm, and RoG was 1.79 nm-1.80 nm. Then, for Ag85C, the mean RMSD was 0.16 nm-0.18 nm, RMSF was 0.09, and RoG was 1.77 nm. The study highlights that these promising results demonstrate the potential of some repurposed drugs in combating the Ag85 complex.

摘要

结核病(TB)在由一种高度适应性细菌引起的肺部疾病中仍然是一种严重且致命的感染。其逃避某些药物的能力与其独特结构有关,特别是在细胞包膜中,其中Ag85复合蛋白在这一部分起着至关重要的作用。本研究的目的是利用一种针对Ag85复合蛋白的药物重新利用策略。本研究采用了一种计算方法,使用120种经实验确定可抑制结核病的选定药物。利用Autodock Vina进行虚拟筛选分子对接,以筛选化合物并确定与Ag85复合物的强结合剂。分子动力学模拟使用Gromacs软件包评估每个复合物的稳定性,包括均方根偏差(RMSD)、均方根波动(RMSF)和回转半径(RoG)。此外,还进行了吸收、分布、代谢、排泄和毒性(ADMET)评估,以收集有关每个命中化合物药物相似性的更多信息。选择了三种化合物,即塞拉菌素、伊马替尼和艾曲泊帕,作为重新利用以抑制Ag85复合酶活性的潜在药物,其结合亲和力在-10.560千卡/摩尔至-11.422千卡/摩尔之间。在100纳秒内(3个复制品)的分子动力学模拟表明,每个Ag85A复合物的平均RMSD为0.15纳米至0.16纳米,RMSF为0.09纳米至0.10纳米,RoG为1.80纳米至1.81纳米。对于Ag85B,平均RMSD为1.79纳米至1.80纳米,RMSF为0.08纳米至0.09纳米,RoG为1.79纳米至1.80纳米。然后,对于Ag85C,平均RMSD为0.16纳米至0.18纳米,RMSF为0.09,RoG为1.77纳米。该研究强调,这些有前景的结果证明了一些重新利用的药物在对抗Ag85复合物方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098b/12059857/7f5a5e50a666/NarraJ-5-e1130-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验