Serrie Marie, Segura Vincent, Blanc Alain, Brun Laurent, Dlalah Naïma, Gilles Frédéric, Heurtevin Laure, Le Pans Mathilde, Signoret Véronique, Viret Sabrina, Audergon Jean-Marc, Quilot Bénédicte, Roth Morgane
INRAE, UR GAFL, 84140 Avignon, France.
AGAP Institut, CIRAD, INRAE, Institut Agro, Université Montpellier, 34000 Montpellier, France.
Hortic Res. 2025 Apr 22;12(7):uhaf088. doi: 10.1093/hr/uhaf088. eCollection 2025 Jul.
While breeding for improved immunity is essential to achieve sustainable fruit production, it also requires to account for genotype-by-environment interactions (G × E), which still represent a major challenge. To tackle this issue, we conducted a comprehensive study to identify genetic markers with main and environment-specific effects on pest and disease response in peach () and apricot (). Leveraging multienvironment trials (MET), we assessed the genetic architecture of resistance and tolerance to seven major pests and diseases through visual scoring of symptoms in naturally infected core collections, repeated within and between years and sites. We applied a series of genome-wide association models (GWAS) to both maximum of symptom severity and kinetic disease progression. These analyses lead to the identification of environment-shared quantitative trait loci (QTLs), environment-specific QTLs, and interactive QTLs with antagonist or differential effects across environments. We mapped 60 high-confidence QTLs encompassing a total of 87 candidate genes involved in both basal and host-specific responses, mostly consisting of the Leucine-Rich Repeat Containing Receptors (LRR-CRs) gene family. The most promising disease resistance candidate genes were found for peach leaf curl on LG4 and for apricot and peach rust on LG2 and LG4. These findings underscore the critical role of G × E in shaping the phenotypic response to biotic pressure, especially for blossom blight. Last, models including dominance effects revealed 123 specific QTLs, emphasizing the significance of non-additive genetic effects, therefore warranting further investigation. These insights will support the development of marker-assisted selection to improve the immunity of varieties in diverse environmental conditions.
虽然培育具有更强免疫力的品种对于实现可持续水果生产至关重要,但这也需要考虑基因型与环境的相互作用(G×E),而这仍然是一个重大挑战。为了解决这个问题,我们进行了一项全面的研究,以确定对桃()和杏()的病虫害反应具有主要和环境特异性影响的遗传标记。利用多环境试验(MET),我们通过对自然感染的核心种质资源中的症状进行视觉评分,在多年和多地重复进行,评估了对七种主要病虫害的抗性和耐受性的遗传结构。我们将一系列全基因组关联模型(GWAS)应用于症状严重程度的最大值和疾病的动态进展。这些分析导致了环境共享数量性状位点(QTL)、环境特异性QTL以及在不同环境中具有拮抗或差异效应的交互式QTL的鉴定。我们绘制了60个高置信度的QTL,总共包含87个参与基础和宿主特异性反应的候选基因,主要由富含亮氨酸重复序列的受体(LRR-CRs)基因家族组成。在LG4上发现了对桃缩叶病最有前景的抗病候选基因,在LG2和LG4上发现了对杏和桃锈病最有前景的抗病候选基因。这些发现强调了G×E在塑造对生物压力的表型反应中的关键作用,特别是对于花腐病。最后,包括显性效应的模型揭示了123个特定的QTL,强调了非加性遗传效应的重要性,因此值得进一步研究。这些见解将支持标记辅助选择的发展,以提高不同环境条件下品种的免疫力。