Suppr超能文献

metaGE:通过全基因组关联研究的荟萃分析探究基因型与环境的相互作用。

metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.

作者信息

De Walsche Annaïg, Vergne Alexis, Rincent Renaud, Roux Fabrice, Nicolas Stéphane, Welcker Claude, Mezmouk Sofiane, Charcosset Alain, Mary-Huard Tristan

机构信息

Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.

MIA Paris-Saclay, INRAE, AgroParisTech, Université Paris-Saclay, Palaiseau, France.

出版信息

PLoS Genet. 2025 Jan 10;21(1):e1011553. doi: 10.1371/journal.pgen.1011553. eCollection 2025 Jan.

Abstract

Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments. In this context, we introduce metaGE, a flexible and computationally efficient meta-analysis approach for jointly analyzing single-environment GWAS of any MET experiment. The metaGE procedure accounts for the heterogeneity of quantitative trait loci (QTL) effects across the environmental conditions and allows the detection of QTL whose allelic effect variations are strongly correlated to environmental cofactors. We evaluated the performance of the proposed methodology and compared it to two competing procedures through simulations. We also applied metaGE to two emblematic examples: the detection of flowering QTLs whose effects are modulated by competition in Arabidopsis and the detection of yield QTLs impacted by drought stresses in maize. The procedure identified known and new QTLs, providing valuable insights into the genetic architecture of complex traits and QTL effects dependent on environmental stress conditions. The whole statistical approach is available as an R package.

摘要

在气候不稳定性增加、农业实践多样化以及由于植物检疫处理限制导致害虫压力增大的背景下,阐明植物基因型与环境互作的遗传成分至关重要。对环境胁迫的基因型反应可通过多环境试验(METs)进行研究。然而,MET数据的全基因组关联研究(GWAS)比单一环境的研究要复杂得多。在此背景下,我们引入了metaGE,这是一种灵活且计算高效的荟萃分析方法,用于联合分析任何MET实验的单一环境GWAS。metaGE程序考虑了环境条件下数量性状位点(QTL)效应的异质性,并允许检测其等位基因效应变异与环境协变量高度相关的QTL。我们通过模拟评估了所提出方法的性能,并将其与两种竞争方法进行了比较。我们还将metaGE应用于两个典型例子:检测拟南芥中受竞争调节的开花QTL,以及检测玉米中受干旱胁迫影响的产量QTL。该程序识别出了已知和新的QTL,为复杂性状的遗传结构以及依赖于环境胁迫条件的QTL效应提供了有价值的见解。整个统计方法以R包的形式提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f885/11756807/6b79fc5a12b9/pgen.1011553.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验