Gausen Anna, Guo Ce, Luk Wayne
Imperial College London, London, UK.
AI Ethics. 2025;5(2):1827-1845. doi: 10.1007/s43681-024-00527-1. Epub 2024 Jul 29.
The recommendation algorithms on social media platforms are hugely impactful, they shape information flow and human connection on an unprecedented scale. Despite growing criticism of the social impact of these algorithms, they are still opaque and transparency is an ongoing challenge. This paper has three contributions: (1) We introduce the concept of . This can be defined as transparency approaches that consider both the technical system, and how it interacts with users and the environment in which it is deployed. We propose sociotechnical approaches will improve the understanding of social media algorithms for policy-makers and the public. (2) We present an approach to sociotechnical transparency using agent-based modelling, which overcomes a number of challenges with existing approaches. This is a novel application of agent-based modelling to provide transparency into how the recommendation algorithm prioritises different curation signals for a topic. (3) This agent-based model has a novel implementation of a multi-objective recommendation algorithm that is calibrated and empirically validated with data collected from X, previously Twitter. We show that agent-based modelling can provide useful insights into how the recommendation algorithm prioritises different curation signals. We can begin to explore whether the priorities of the recommendation algorithm align with what platforms say it is doing and whether they align with what the public want.
社交媒体平台上的推荐算法具有巨大影响力,它们以前所未有的规模塑造着信息流和人际关系。尽管对这些算法的社会影响的批评日益增多,但它们仍然不透明,透明度仍是一个持续存在的挑战。本文有三个贡献:(1)我们引入了 的概念。这可以定义为既考虑技术系统,又考虑其与用户以及其部署环境如何相互作用的透明度方法。我们提出社会技术方法将增进政策制定者和公众对社交媒体算法的理解。(2)我们提出一种使用基于代理的建模实现社会技术透明度的方法,该方法克服了现有方法的一些挑战。这是基于代理的建模的一种新颖应用,用于揭示推荐算法如何为某个主题对不同的策划信号进行优先级排序。(3)这个基于代理的模型对一种多目标推荐算法进行了新颖的实现,并使用从X(前身为推特)收集的数据进行了校准和实证验证。我们表明,基于代理的建模可以为推荐算法如何对不同的策划信号进行优先级排序提供有用的见解。我们可以开始探索推荐算法的优先级是否与平台所说的其正在做的事情一致,以及它们是否与公众的期望一致。