Suppr超能文献

开发基于智能体的模型以最小化恶意信息在动态社交网络中的传播。

Developing an agent-based model to minimize spreading of malicious information in dynamic social networks.

作者信息

Alassad Mustafa, Hussain Muhammad Nihal, Agarwal Nitin

机构信息

COSMOS Research Center, UA-Little Rock, Little Rock, AR USA.

Equifax, Atlanta, USA.

出版信息

Comput Math Organ Theory. 2023 Apr 12:1-16. doi: 10.1007/s10588-023-09375-6.

Abstract

This research introduces a systematic and multidisciplinary agent-based model to interpret and simplify the dynamic actions of the users and communities in an evolutionary online (offline) social network. The organizational cybernetics approach is used to control/monitor the malicious information spread between communities. The stochastic one-median problem minimizes the agent response time and eliminates the information spread across the online (offline) environment. The performance of these methods was measured against a Twitter network related to an armed protest demonstration against the COVID-19 lockdown in Michigan state in May 2020. The proposed model demonstrated the dynamicity of the network, enhanced the agent level performance, minimized the malicious information spread, and measured the response to the second stochastic information spread in the network.

摘要

本研究引入了一种系统的、多学科的基于主体的模型,以解释和简化进化型在线(离线)社交网络中用户和社区的动态行为。采用组织控制论方法来控制/监测社区之间恶意信息的传播。随机单中位数问题可将主体响应时间降至最低,并消除在线(离线)环境中的信息传播。这些方法的性能是根据与2020年5月密歇根州针对新冠疫情封锁的武装抗议示威相关的推特网络进行衡量的。所提出的模型展示了网络的动态性,提高了主体层面的性能,将恶意信息传播降至最低,并衡量了对网络中第二次随机信息传播的响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a7/10090746/10f1ba3f631f/10588_2023_9375_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验