Ren Dan, Gao Jing, Pan Linfeng, Wang Zaiwei, Luo Jingshan, Zakeeruddin Shaik M, Hagfeldt Anders, Grätzel Michael
Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Angew Chem Int Ed Engl. 2019 Oct 14;58(42):15036-15040. doi: 10.1002/anie.201909610. Epub 2019 Sep 10.
Electrochemical reduction of carbon dioxide, if powered by renewable electricity, could serve as a sustainable technology for carbon recycling and energy storage. Among all the products, ethanol is an attractive liquid fuel. However, the maximum faradaic efficiency of ethanol is only ≈10 % on polycrystalline Cu. Here, CuZn bimetallic catalysts were synthesized by in situ electrochemical reduction of ZnO-shell/CuO-core bi-metal-oxide. Dynamic evolution of catalyst was revealed by STEM-EDS mapping, showing the migration of Zn atom and blending between Cu and Zn. CuZn bimetallic catalysts showed preference towards ethanol formation, with the ratio of ethanol/ethylene increasing over five times regardless of applied potential. We achieved 41 % faradaic efficiency for C liquids with this catalyst. Transitioning from H-cell to an electrochemical flow cell, we achieved 48.6 % faradaic efficiency and -97 mA cm partial current density for C liquids at only -0.68 V versus reversible hydrogen electrode in 1 m KOH. Operando Raman spectroscopy showed that CO binding on Cu sites was modified by Zn. Free CO and adsorbed *CH are believed to combine and form *COCH intermediate, which is exclusively reduced to ethanol.
如果由可再生电力驱动,二氧化碳的电化学还原可以作为一种可持续的碳循环和储能技术。在所有产物中,乙醇是一种有吸引力的液体燃料。然而,在多晶铜上乙醇的最大法拉第效率仅约为10%。在此,通过原位电化学还原ZnO壳/CuO核双金属氧化物合成了CuZn双金属催化剂。STEM-EDS映射揭示了催化剂的动态演变,显示了Zn原子的迁移以及Cu和Zn之间的混合。CuZn双金属催化剂对乙醇的形成表现出偏好,无论施加何种电位,乙醇/乙烯的比例都增加了五倍以上。使用这种催化剂,我们实现了C液体41%的法拉第效率。从H型电池过渡到电化学流动电池,在1 m KOH中,相对于可逆氢电极,仅在-0.68 V时,我们实现了C液体48.6%的法拉第效率和-97 mA cm的分电流密度。原位拉曼光谱表明,Zn改变了CO在Cu位点上的吸附。游离CO和吸附的CH被认为会结合形成COCH中间体,该中间体专门还原为乙醇。