Jahani Seyedehdelaram, Ahmadkhani Somayeh, Boguslawski Katharina, Tecmer Paweł
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
J Chem Phys. 2025 May 14;162(18). doi: 10.1063/5.0262453.
We introduce affordable computational strategies for calculating orbital and pair-orbital energies in atomic and molecular systems. Our methods are based on the pair Coupled Cluster Doubles (pCCD) ansatz and its orbital-optimized variant. The computed orbital and pair-orbital energies are then subsequently used to approximate ionization potentials (IPs), electron affinities (EAs), the resulting charge gaps, double ionization potentials (DIPs), and double electron affinities (DEAs). Our methodology builds on the standard Koopmans' theorem and refines it for a pCCD-based wave function. Furthermore, we incorporate pCCD electron correlation effects into the model utilizing canonical Hartree-Fock or natural pCCD-optimized orbitals. The latter represents a diagonal approximation to the (D)IP/D(EA) equation of motion pCCD models. We benchmarked our newly developed models against theoretical and available experimental data for selected atoms in various basis set sizes and a set of 24 organic acceptor molecules. Our numerical results show that the Koopmans' approach based on pCCD natural orbitals provides a balanced treatment of occupied and virtual orbital energies, resulting in reliable predictions of charge gaps at a low computational cost.
我们介绍了用于计算原子和分子系统中轨道能量和对轨道能量的经济高效的计算策略。我们的方法基于对耦合簇双激发(pCCD)假设及其轨道优化变体。计算得到的轨道能量和对轨道能量随后被用于近似电离势(IP)、电子亲和能(EA)、由此产生的电荷间隙、双电离势(DIP)和双电子亲和能(DEA)。我们的方法基于标准的库普曼斯定理,并针对基于pCCD的波函数对其进行了改进。此外,我们利用正则哈特里-福克轨道或自然pCCD优化轨道将pCCD电子相关效应纳入模型。后者代表了(D)IP/D(EA)运动方程pCCD模型的对角近似。我们在各种基组大小下针对选定原子以及一组24个有机受体分子的理论和现有实验数据对我们新开发的模型进行了基准测试。我们的数值结果表明,基于pCCD自然轨道的库普曼斯方法对占据轨道能量和虚拟轨道能量进行了平衡处理,从而能够以低计算成本可靠地预测电荷间隙。