College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China.
School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, China.
J Chem Inf Model. 2024 Aug 26;64(16):6684-6698. doi: 10.1021/acs.jcim.4c00957. Epub 2024 Aug 13.
Drug-Target Interaction (DTI) prediction facilitates acceleration of drug discovery and promotes drug repositioning. Most existing deep learning-based DTI prediction methods can better extract discriminative features for drugs and proteins, but they rarely consider multimodal features of drugs. Moreover, learning the interaction representations between drugs and targets needs further exploration. Here, we proposed a simple ulti-modal ating etwork for prediction, MGNDTI, based on multimodal representation learning and the gating mechanism. MGNDTI first learns the sequence representations of drugs and targets using different retentive networks. Next, it extracts molecular graph features of drugs through a graph convolutional network. Subsequently, it devises a multimodal gating network to obtain the joint representations of drugs and targets. Finally, it builds a fully connected network for computing the interaction probability. MGNDTI was benchmarked against seven state-of-the-art DTI prediction models (CPI-GNN, TransformerCPI, MolTrans, BACPI, CPGL, GIFDTI, and FOTF-CPI) using four data sets (i.e., Human, , BioSNAP, and BindingDB) under four different experimental settings. Through evaluation with AUROC, AUPRC, accuracy, F1 score, and MCC, MGNDTI significantly outperformed the above seven methods. MGNDTI is a powerful tool for DTI prediction, showcasing its superior robustness and generalization ability on diverse data sets and different experimental settings. It is freely available at https://github.com/plhhnu/MGNDTI.
药物-靶点相互作用(DTI)预测有助于加速药物发现并促进药物重新定位。大多数现有的基于深度学习的 DTI 预测方法可以更好地提取药物和蛋白质的鉴别特征,但它们很少考虑药物的多模态特征。此外,学习药物和靶点之间的相互作用表示还需要进一步探索。在这里,我们提出了一种简单的基于多模态表示学习和门控机制的多模态激活网络 MGNDTI 用于预测。MGNDTI 首先使用不同的保留网络学习药物和靶点的序列表示。接下来,它通过图卷积网络提取药物的分子图特征。随后,它设计了一个多模态门控网络来获得药物和靶点的联合表示。最后,它构建一个全连接网络来计算相互作用概率。我们使用四个数据集(即 Human 、BioSNAP 、BindingDB 和,在四个不同的实验设置下,将 MGNDTI 与七种最先进的 DTI 预测模型(CPI-GNN、TransformerCPI、MolTrans、BACPI、CPGL、GIFDTI 和 FOTF-CPI)进行了基准测试。通过 AUROC、AUPRC、准确性、F1 得分和 MCC 的评估,MGNDTI 显著优于上述七种方法。MGNDTI 是一种强大的 DTI 预测工具,它在不同的数据和不同的实验设置上展示了出色的稳健性和泛化能力。它可以在 https://github.com/plhhnu/MGNDTI 上免费获得。