Jiao Lidong, Zhao Mingshu, Zheng Qingyang, Ren Qingyi, Su Zhou, Li Min, Li Feng
School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
Xi'an High-tech Research Institute, 710025 Xi'an, China.
Dalton Trans. 2025 Jun 24;54(25):9803-9834. doi: 10.1039/d4dt02957g.
With the rapid development of new energy technologies, hybrid supercapacitors have received widespread attention owing to their advantages of high power density, fast charging/discharging rate and long cycle life. In this case, the selection and design of electrode materials are the key to improving the energy storage performance of supercapacitors. Herein, zeolitic imidazolate framework-67 (ZIF-67) is presented as a good candidate material for the fabrication of supercapacitor electrodes because of its controllable pore size, constant cavity size and large specific area. Moreover, pristine ZIF-67 and ZIF-67-derived porous carbon have shown exemplary performances in supercapacitors. However, they belong to the class of electric double layer capacitor materials and have a lower magnitude of energy storage compared with pseudocapacitor materials. Therefore, to improve the energy density of hybrid supercapacitors, other ZIF-67 derivatives need to be explored, especially chalcogenides. This review mainly reports the application of ZIF-67-derived transition metal chalcogenides (TMCs, C including Oxide, Sulfide, Selenide, Telluride) in supercapacitors. Moreover, the strategies for the preparation of ZIF-67-derived TMCs and their electrochemical performance in supercapacitors are further discussed. Finally, the remaining challenges and future perspectives are highlighted.
随着新能源技术的快速发展,混合超级电容器因其高功率密度、快速充放电速率和长循环寿命等优点而受到广泛关注。在这种情况下,电极材料的选择和设计是提高超级电容器储能性能的关键。在此,沸石咪唑酯骨架-67(ZIF-67)因其孔径可控、腔尺寸恒定和比表面积大,被视为制备超级电容器电极的良好候选材料。此外,原始ZIF-67和ZIF-67衍生的多孔碳在超级电容器中已展现出优异性能。然而,它们属于双电层电容器材料类别,与赝电容器材料相比,储能量级较低。因此,为提高混合超级电容器的能量密度,需要探索其他ZIF-67衍生物,尤其是硫族化物。本综述主要报道ZIF-67衍生的过渡金属硫族化物(TMCs,包括氧化物、硫化物、硒化物、碲化物)在超级电容器中的应用。此外,还进一步讨论了制备ZIF-67衍生的TMCs的策略及其在超级电容器中的电化学性能。最后,强调了剩余的挑战和未来展望。