Suppr超能文献

基于生物信息学和机器学习探索梅尼埃病的潜在生物标志物和潜在因果关系。

Exploring the potential biomarkers and potential causality of Ménière disease based on bioinformatics and machine learning.

作者信息

Wu Tong, Zhou Danwei, Chang Le, Liu Yin, Sun Li, Gu Xiaoqiong

机构信息

Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China.

Geriatric Department, Jilin Provincial Academy of Chinese Medicine Sciences, Changchun, Jilin, China.

出版信息

Medicine (Baltimore). 2025 May 9;104(19):e42399. doi: 10.1097/MD.0000000000042399.

Abstract

Meniere disease (MD) is a common inner ear disorder closely related to immune abnormalities, but research on the characteristic genes between MD and immune responses is still insufficient. We employ bioinformatics and machine learning to predict potential biomarkers and characteristic immune cells associated with MD, investigating the Mendelian randomization causation between immune cells and MD, providing new insight for the early diagnosis, prevention, and treatment of MD. We obtained relevant data on MD from the GEO database using R, conducted differential gene analysis, and performed weighted gene co-expression network analysis (WGCNA) to identify genes associated with MD. Moreover, by integrating the selection of core genes from the PPI with machine learning techniques, we predicted potential biomarkers for MD. Simultaneously, conducted immune infiltration analysis of the core genes and identified key immune cell types. Finally, employed Mendelian randomization to comprehensively evaluate the causal relationship between immune cells and MD. Through differential gene analysis and WGCNA, we identified 550 genes associated with MD, with enrichment analysis predominantly focused on pertinent immune responses and related diseases. The protein-protein interaction (PPI) screening and machine learning techniques, we predicted 2 potential biomarkers for MD: CD5 and AJUBA, 3 core immune cell types associated with MD: T cells CD4 memory resting, T cells gamma delta and Dendritic cells activated. Mendelian randomization analysis revealed a causal relationship between 26 types of immune cells and MD. There is a causal relationship between immune cells and MD. CD5 and AJUBA are potential biomarkers of MD, while T cells CD4 memory resting, T cells gamma delta and Dendritic cells activated are core immune cells of MD. These potential biomarkers and core immune cells offer new insights for the early diagnosis, prevention, and treatment of MD.

摘要

梅尼埃病(MD)是一种与免疫异常密切相关的常见内耳疾病,但关于MD与免疫反应之间特征基因的研究仍不充分。我们运用生物信息学和机器学习来预测与MD相关的潜在生物标志物和特征性免疫细胞,研究免疫细胞与MD之间的孟德尔随机化因果关系,为MD的早期诊断、预防和治疗提供新的见解。我们使用R语言从GEO数据库中获取MD的相关数据,进行差异基因分析,并进行加权基因共表达网络分析(WGCNA)以识别与MD相关的基因。此外,通过将蛋白质-蛋白质相互作用(PPI)中的核心基因选择与机器学习技术相结合,我们预测了MD的潜在生物标志物。同时,对核心基因进行免疫浸润分析并确定关键免疫细胞类型。最后,运用孟德尔随机化全面评估免疫细胞与MD之间的因果关系。通过差异基因分析和WGCNA,我们鉴定出550个与MD相关的基因,富集分析主要集中在相关免疫反应和相关疾病上。通过蛋白质-蛋白质相互作用(PPI)筛选和机器学习技术,我们预测了MD的2种潜在生物标志物:CD5和AJUBA,以及与MD相关的3种核心免疫细胞类型:静息记忆CD4 T细胞、γδ T细胞和活化树突状细胞。孟德尔随机化分析揭示了26种免疫细胞与MD之间的因果关系。免疫细胞与MD之间存在因果关系。CD5和AJUBA是MD的潜在生物标志物,而静息记忆CD4 T细胞、γδ T细胞和活化树突状细胞是MD的核心免疫细胞。这些潜在生物标志物和核心免疫细胞为MD的早期诊断、预防和治疗提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bff1/12073935/791573b8baf0/medi-104-e42399-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验