文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过分子动力学模拟对用于血管组织工程的混合支架的细胞粘附特性进行的研究。

A study on the cellular adhesion properties of a hybrid scaffold for vascular tissue engineering through molecular dynamics simulation.

作者信息

Shams Faeze, Jamshidian Mostafa, Shaygani Hossein, Maleki Sasan, Soltani Mohamadreza, Shamloo Amir

机构信息

Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran.

Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran.

出版信息

Sci Rep. 2025 May 12;15(1):16433. doi: 10.1038/s41598-025-01545-7.


DOI:10.1038/s41598-025-01545-7
PMID:40355635
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12069603/
Abstract

Utilizing biocompatible hybrid scaffolds that promote cell adhesion and proliferation is critically significant in the field of tissue engineering. In order to achieve this goal, the composition of polymers in the sample should be adjusted accordingly In this research, molecular dynamics simulations are utilized to investigate how the composition of blends influences the protein adsorption properties of hybrid scaffolds. Scaffolds considered here consist of Bombyx mori silk fibroin (B. mori SF) and thermoplastic polyurethane (TPU) intended for application in vascular grafts. Three different compositions are investigated in this study: One sample with 70% TPU by volume (SF:TPU-3/7), the second sample with 50% TPU (SF:TPU-1/1) and the last sample with 30% TPU (SF:TPU-7/3). The interaction between the polymeric scaffold surfaces and fibronectin and laminin, two major proteins found in vascular tissues, is studied using molecular dynamics simulations. The biocompatibility of each sample is examined based on calculated adhesion energy and final protein conformation. Furthermore, MTT cell viability, cell adhesion, and live/dead assays are performed to validate the simulation results. Third-passage human umbilical vein cell (HUVEC) is utilized in this study. The simulations revealed that B. mori SF (SF) content in the blend needs to be balanced with TPU to enhance the protein adsorption strength. The experimental results exhibited a correlation with the simulations and were verified with cell adhesion and staining assays. The SF:TPU-1/1 had the highest cell viability followed by SF:TPU-7/3 and SF:TPU-3/7 with [Formula: see text], [Formula: see text], and [Formula: see text], respectively, demonstrating the accuracy of the simulations and the possibility of predicting the biocompatibility of biomaterials through simulations.

摘要

利用促进细胞黏附和增殖的生物相容性混合支架在组织工程领域至关重要。为实现这一目标,应相应调整样品中聚合物的组成。在本研究中,利用分子动力学模拟来研究共混物的组成如何影响混合支架的蛋白质吸附特性。这里考虑的支架由家蚕丝素蛋白(B. mori SF)和用于血管移植物的热塑性聚氨酯(TPU)组成。本研究考察了三种不同的组成:一个样品中TPU的体积分数为70%(SF:TPU - 3/7),第二个样品中TPU的体积分数为50%(SF:TPU - 1/1),最后一个样品中TPU的体积分数为30%(SF:TPU - 7/3)。使用分子动力学模拟研究了聚合物支架表面与血管组织中发现的两种主要蛋白质纤连蛋白和层粘连蛋白之间的相互作用。基于计算出的黏附能和最终蛋白质构象来检查每个样品的生物相容性。此外,进行MTT细胞活力、细胞黏附及活/死检测以验证模拟结果。本研究使用第三代人脐静脉细胞(HUVEC)。模拟结果表明,共混物中家蚕丝素蛋白(SF)的含量需要与TPU平衡以提高蛋白质吸附强度。实验结果与模拟结果相关,并通过细胞黏附和染色检测得到验证。SF:TPU - 1/1具有最高的细胞活力,其次是SF:TPU - 7/3和SF:TPU - 3/7,其细胞活力分别为[公式:见原文]、[公式:见原文]和[公式:见原文],这证明了模拟的准确性以及通过模拟预测生物材料生物相容性的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/29cda8d7e550/41598_2025_1545_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/2fea85aaa8a2/41598_2025_1545_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/27ac1f76c3cf/41598_2025_1545_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/e19b371fd3a7/41598_2025_1545_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/56dbb6c4903c/41598_2025_1545_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/96e72b1b8abb/41598_2025_1545_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/6676028f8efa/41598_2025_1545_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/2ca3308fbc06/41598_2025_1545_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/4bd6be5d8c30/41598_2025_1545_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/01450baff4b5/41598_2025_1545_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/46f8d08fe463/41598_2025_1545_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/0fb5b8b64870/41598_2025_1545_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/deec5171fddd/41598_2025_1545_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/00d3aa1c778f/41598_2025_1545_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/4a2a710bd362/41598_2025_1545_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/29cda8d7e550/41598_2025_1545_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/2fea85aaa8a2/41598_2025_1545_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/27ac1f76c3cf/41598_2025_1545_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/e19b371fd3a7/41598_2025_1545_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/56dbb6c4903c/41598_2025_1545_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/96e72b1b8abb/41598_2025_1545_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/6676028f8efa/41598_2025_1545_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/2ca3308fbc06/41598_2025_1545_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/4bd6be5d8c30/41598_2025_1545_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/01450baff4b5/41598_2025_1545_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/46f8d08fe463/41598_2025_1545_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/0fb5b8b64870/41598_2025_1545_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/deec5171fddd/41598_2025_1545_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/00d3aa1c778f/41598_2025_1545_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/4a2a710bd362/41598_2025_1545_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a4/12069603/29cda8d7e550/41598_2025_1545_Fig15_HTML.jpg

相似文献

[1]
A study on the cellular adhesion properties of a hybrid scaffold for vascular tissue engineering through molecular dynamics simulation.

Sci Rep. 2025-5-12

[2]
Optimization strategies for electrospun silk fibroin tissue engineering scaffolds.

Biomaterials. 2009-6

[3]
A novel hybrid silk-fibroin/polyurethane three-layered vascular graft: towards in situ tissue-engineered vascular accesses for haemodialysis.

Biomed Mater. 2019-1-30

[4]
Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications.

Mater Sci Eng C Mater Biol Appl. 2019-4-24

[5]
Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

Mater Sci Eng C Mater Biol Appl. 2013-8-2

[6]
Phenomenological models of Bombyx mori silk fibroin and their mechanical behavior using molecular dynamics simulations.

Mater Sci Eng C Mater Biol Appl. 2019-11-9

[7]
Utilization of Molecular Dynamics Simulation Coupled with Experimental Assays to Optimize Biocompatibility of an Electrospun PCL/PVA Scaffold.

PLoS One. 2017-1-24

[8]
Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.

J Craniofac Surg. 2016-3

[9]
Development of a new surgical sheet containing both silk fibroin and thermoplastic polyurethane for cardiovascular surgery.

Surg Today. 2018-5

[10]
Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.

Int J Biol Macromol. 2017-2

引用本文的文献

[1]
Fabrication of a low-kink-radius bilayer vascular scaffold incorporating a TPU stent fabricated via melt electrowriting and an electrospun PCL/PU/gelatin layer.

Sci Rep. 2025-7-10

本文引用的文献

[1]
Corrigendum to "Tough and thermal insulating cellulose-based aerogel fiber via long yarn-assisted interfacial polyelectrolyte complexation spinning" [Carbohydrate Polymers 344 (2024) 122501].

Carbohydr Polym. 2025-7-1

[2]
A novel injectable sodium alginate/chitosan/sulfated bacterial cellulose hydrogel as biohybrid artificial pancreas for real-time glycaemic regulation.

Carbohydr Polym. 2025-4-15

[3]
Egg white protein‑sodium alginate smart labels based on pH-driven method and nonphase change 3D printing in mackerel freshness response.

Int J Biol Macromol. 2025-3

[4]
Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering.

Int J Biol Macromol. 2024-12

[5]
In vitro and in vivo investigation of chitosan/silk fibroin injectable interpenetrating network hydrogel with microspheres for cartilage regeneration.

Int J Biol Macromol. 2024-6

[6]
Degradation profiles of the poly(ε-caprolactone)/silk fibroin electrospinning membranes and their potential applications in tissue engineering.

Int J Biol Macromol. 2024-5

[7]
A novel multifunctional chitosan-gelatin/carboxymethyl cellulose-alginate bilayer hydrogel containing human placenta extract for accelerating full-thickness wound healing.

Int J Biol Macromol. 2023-12-31

[8]
Fabrication of heparinized bi-layered vascular graft with PCL/PU/gelatin co-electrospun and chitosan/silk fibroin/gelatin freeze-dried hydrogel for improved endothelialization and enhanced mechanical properties.

Int J Biol Macromol. 2023-12-31

[9]
Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration.

Mater Today Bio. 2023-4-27

[10]
Investigating the correlation between the protein adhesion simulation and the biocompatibility of polymeric substrate for skin-tissue-engineering applications.

Phys Chem Chem Phys. 2023-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索