Shahverdi Mohammad, Shaygani Hossein, Soltani Mohamadreza, Dadkhah Kayvan, Rezaei Demneh Seyed Mohammad Hossein, Mohammadi Kaivan, Shamloo Amir
Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave, Tehran, Iran.
Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
Sci Rep. 2025 Jul 10;15(1):24894. doi: 10.1038/s41598-025-10547-4.
This study investigates the fabrication of a small-diameter bilayer vascular graft, which is an inner layer fabricated from melt-electrowriting (MEW) thermoplastic polyurethane (TPU) scaffold and an outer co-electrospun layer made of heparinized polycaprolactone (PCL)/polyurethane (PU)/gelatin, aimed at mimicking the extracellular matrix (ECM). The bilayer structure exhibited good flexibility, mechanical stability, and anti-thrombogenic properties, overcoming the drawbacks of vascular grafts, such as high kink radius and tendency toward thrombosis. MTT assays proved cytocompatibility, showing an increase in cell proliferation over 7 days, the optical density of the bilayer vascular graft increased from [Formula: see text] on day [Formula: see text] to [Formula: see text] on day [Formula: see text], respectively, due to its fibrous structure and hydrophilic properties. Live/dead and SEM assays confirmed cell viability, attachment, and endothelial layer formation on the scaffold, which provides long-term graft patency. The bilayer graft with integrated MEW structure provided the balanced mechanical and kink-radius properties (ultimate tensile strength [Formula: see text], Young's modulus [Formula: see text], suture retention [Formula: see text]) with a low kink radius ([Formula: see text]), surpassing the mechanical properties of coronary artery. A heparin release profile of 70% after 4 weeks was obtained, thus increasing anticoagulant effects. This combination of synthetic (TPU, PCL, PU) and natural (gelatin) polymers yields a biocompatible, structurally stable vascular graft, which efficiently supports endothelialization, and thus has good potential for clinical vascular applications.
本研究探讨了一种小直径双层血管移植物的制造方法,该移植物的内层由熔喷电写(MEW)热塑性聚氨酯(TPU)支架制成,外层是由肝素化聚己内酯(PCL)/聚氨酯(PU)/明胶共电纺而成,旨在模拟细胞外基质(ECM)。这种双层结构表现出良好的柔韧性、机械稳定性和抗血栓形成特性,克服了血管移植物的缺点,如高扭结半径和血栓形成倾向。MTT试验证明了细胞相容性,显示在7天内细胞增殖增加,由于其纤维结构和亲水特性,双层血管移植物的光密度在第[公式:见原文]天从[公式:见原文]增加到第[公式:见原文]天的[公式:见原文]。活/死和扫描电子显微镜试验证实了细胞活力、附着以及支架上内皮细胞层的形成,这为移植物的长期通畅提供了保障。具有集成MEW结构的双层移植物提供了平衡的机械性能和扭结半径特性(极限拉伸强度[公式:见原文]、杨氏模量[公式:见原文]、缝线保留力[公式:见原文]),扭结半径低([公式:见原文]),超过了冠状动脉的机械性能。4周后获得了70%的肝素释放曲线,从而增强了抗凝效果。这种合成(TPU、PCL、PU)和天然(明胶)聚合物的组合产生了一种生物相容性好、结构稳定的血管移植物,能有效支持内皮化,因此在临床血管应用中具有良好的潜力。