静电纺丝丝素蛋白组织工程支架的优化策略
Optimization strategies for electrospun silk fibroin tissue engineering scaffolds.
作者信息
Meinel Anne J, Kubow Kristopher E, Klotzsch Enrico, Garcia-Fuentes Marcos, Smith Michael L, Vogel Viola, Merkle Hans P, Meinel Lorenz
机构信息
Institute of Pharmaceutical Sciences, ETH Zurich, Department for Chemistry and Applied Biosciences, HCI J 390.1, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.
出版信息
Biomaterials. 2009 Jun;30(17):3058-67. doi: 10.1016/j.biomaterials.2009.01.054. Epub 2009 Feb 23.
As a contribution to the functionality of scaffolds in tissue engineering, here we report on advanced scaffold design through introduction and evaluation of topographical, mechanical and chemical cues. For scaffolding, we used silk fibroin (SF), a well-established biomaterial. Biomimetic alignment of fibers was achieved as a function of the rotational speed of the cylindrical target during electrospinning of a SF solution blended with polyethylene oxide. Seeding fibrous SF scaffolds with human mesenchymal stem cells (hMSCs) demonstrated that fiber alignment could guide hMSC morphology and orientation demonstrating the impact of scaffold topography on the engineering of oriented tissues. Beyond currently established methodologies to measure bulk properties, we assessed the mechanical properties of the fibers by conducting extension at breakage experiments on the level of single fibers. Chemical modification of the scaffolds was tested using donor/acceptor fluorophore labeled fibronectin. Fluorescence resonance energy transfer imaging allowed to assess the conformation of fibronectin when adsorbed on the SF scaffolds, and demonstrated an intermediate extension level of its subunits. Biological assays based on hMSCs showed enhanced cellular adhesion and spreading as a result of fibronectin adsorbed on the scaffolds. Our studies demonstrate the versatility of SF as a biomaterial to engineer modified fibrous scaffolds and underscore the use of biofunctionally relevant analytical assays to optimize fibrous biomaterial scaffolds.
作为对组织工程中支架功能的一项贡献,我们在此报告通过引入和评估拓扑、机械和化学线索来进行先进的支架设计。对于支架构建,我们使用了丝素蛋白(SF),一种成熟的生物材料。在对与聚环氧乙烷混合的SF溶液进行静电纺丝过程中,通过控制圆柱形目标的旋转速度实现了纤维的仿生排列。用人骨髓间充质干细胞(hMSC)接种纤维状SF支架表明,纤维排列可引导hMSC的形态和取向,证明了支架拓扑结构对定向组织工程的影响。除了目前用于测量整体性质的方法外,我们通过在单纤维水平上进行断裂伸长实验来评估纤维的机械性能。使用供体/受体荧光团标记的纤连蛋白对支架进行化学修饰测试。荧光共振能量转移成像能够评估纤连蛋白吸附在SF支架上时的构象,并显示其亚基处于中间伸展水平。基于hMSC的生物学测定表明,由于纤连蛋白吸附在支架上,细胞粘附和铺展得到增强。我们的研究证明了SF作为一种生物材料在构建改性纤维支架方面的多功能性,并强调了使用具有生物功能相关性的分析测定来优化纤维生物材料支架。