Fillingim Matt, Tanguay-Sabourin Christophe, Parisien Marc, Zare Azin, Guglietti Gianluca V, Norman Jax, Petre Bogdan, Bortsov Andrey, Ware Mark, Perez Jordi, Roy Mathieu, Diatchenko Luda, Vachon-Presseau Etienne
Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
Nat Hum Behav. 2025 May 12. doi: 10.1038/s41562-025-02156-y.
Chronic pain is a multifactorial condition presenting significant diagnostic and prognostic challenges. Biomarkers for the classification and the prediction of chronic pain are therefore critically needed. Here, in this multidataset study of over 523,000 participants, we applied machine learning to multidimensional biological data from the UK Biobank to identify biomarkers for 35 medical conditions associated with pain (for example, rheumatoid arthritis and gout) or self-reported chronic pain (for example, back pain and knee pain). Biomarkers derived from blood immunoassays, brain and bone imaging, and genetics were effective in predicting medical conditions associated with chronic pain (area under the curve (AUC) 0.62-0.87) but not self-reported pain (AUC 0.50-0.62). Notably, all biomarkers worked in synergy with psychosocial factors, accurately predicting both medical conditions (AUC 0.69-0.91) and self-reported pain (AUC 0.71-0.92). These findings underscore the necessity of adopting a holistic approach in the development of biomarkers to enhance their clinical utility.
慢性疼痛是一种多因素疾病,带来了重大的诊断和预后挑战。因此,迫切需要用于慢性疼痛分类和预测的生物标志物。在此,在这项对超过52.3万名参与者的多数据集研究中,我们将机器学习应用于来自英国生物银行的多维生物数据,以识别与疼痛相关的35种医学病症(如类风湿性关节炎和痛风)或自我报告的慢性疼痛(如背痛和膝盖痛)的生物标志物。源自血液免疫分析、脑和骨成像以及遗传学的生物标志物在预测与慢性疼痛相关的医学病症方面有效(曲线下面积(AUC)为0.62 - 0.87),但在预测自我报告的疼痛方面效果不佳(AUC为0.50 - 0.62)。值得注意的是,所有生物标志物都与社会心理因素协同作用,能够准确预测医学病症(AUC为0.69 - 0.91)和自我报告的疼痛(AUC为0.71 - 0.92)。这些发现强调了在生物标志物开发中采用整体方法以提高其临床效用的必要性。