Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
Nat Med. 2023 Jul;29(7):1821-1831. doi: 10.1038/s41591-023-02430-4. Epub 2023 Jul 6.
Chronic pain is a complex condition influenced by a combination of biological, psychological and social factors. Using data from the UK Biobank (n = 493,211), we showed that pain spreads from proximal to distal sites and developed a biopsychosocial model that predicted the number of coexisting pain sites. This data-driven model was used to identify a risk score that classified various chronic pain conditions (area under the curve (AUC) 0.70-0.88) and pain-related medical conditions (AUC 0.67-0.86). In longitudinal analyses, the risk score predicted the development of widespread chronic pain, the spreading of chronic pain across body sites and high-impact pain about 9 years later (AUC 0.68-0.78). Key risk factors included sleeplessness, feeling 'fed-up', tiredness, stressful life events and a body mass index >30. A simplified version of this score, named the risk of pain spreading, obtained similar predictive performance based on six simple questions with binarized answers. The risk of pain spreading was then validated in the Northern Finland Birth Cohort (n = 5,525) and the PREVENT-AD cohort (n = 178), obtaining comparable predictive performance. Our findings show that chronic pain conditions can be predicted from a common set of biopsychosocial factors, which can aid in tailoring research protocols, optimizing patient randomization in clinical trials and improving pain management.
慢性疼痛是一种复杂的病症,受到生物、心理和社会因素的综合影响。我们利用英国生物库(n=493211)的数据,发现疼痛会从身体近端向远端扩散,并构建了一个能够预测共存疼痛部位数量的身心社会模型。该数据驱动模型用于识别一个风险评分,可以将各种慢性疼痛状况(曲线下面积(AUC)为 0.70-0.88)和与疼痛相关的医疗状况(AUC 为 0.67-0.86)进行分类。在纵向分析中,该风险评分可以预测广泛的慢性疼痛、慢性疼痛在身体部位的扩散以及大约 9 年后的高影响疼痛(AUC 为 0.68-0.78)的发展。关键风险因素包括失眠、感到“厌烦”、疲倦、生活压力事件以及身体质量指数(BMI)>30。这个评分的简化版本,名为疼痛扩散风险,通过六个简单的问题和二进制答案,获得了类似的预测性能。疼痛扩散风险随后在芬兰北部出生队列(n=5525)和 PREVENT-AD 队列(n=178)中进行了验证,获得了可比的预测性能。我们的研究结果表明,慢性疼痛状况可以从一组常见的身心社会因素进行预测,这有助于定制研究方案、优化临床试验中的患者随机分组以及改善疼痛管理。