Suppr超能文献

深度学习下在线音乐学习平台的人工智能知识图谱分析

The analysis of artificial intelligence knowledge graphs for online music learning platform under deep learning.

作者信息

Jiang Shen, Shi Ningning, Liu Chang

机构信息

College of Arts, Heilongjiang University, Harbin, 150080, China.

出版信息

Sci Rep. 2025 May 12;15(1):16481. doi: 10.1038/s41598-025-01810-9.

Abstract

This work proposes a personalized music learning platform model based on deep learning, aiming to provide efficient and customized learning recommendations by integrating audio, video, and user behavior data. This work uses Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks to extract audio and video features, while using multi-layer perceptrons to encode user behavior data. To further improve the recommendation accuracy, this work constructs a knowledge graph that integrates key entities and their relationships in the music field, and fuses them with the extracted feature vectors. The knowledge graph provides the platform with rich semantic information and relational data, helping the model better understand the correlation between user needs and music content, thereby improving the accuracy and personalization of recommendation results. Experimental analysis based on different datasets shows that the proposed music recommendation platform performs well in multiple key performance indicators. Especially under different TOP-K conditions, the accuracy reaches 0.90, significantly exceeding collaborative filtering and content-based recommendation methods. In addition, the platform can maintain high accuracy when processing sparse data, demonstrating stronger robustness and adaptability. The platform has significant advantages in overall performance, providing users with more reliable and efficient recommendation services.

摘要

这项工作提出了一种基于深度学习的个性化音乐学习平台模型,旨在通过整合音频、视频和用户行为数据来提供高效且定制化的学习推荐。这项工作使用卷积神经网络(CNN)和长短期记忆网络(LSTM)来提取音频和视频特征,同时使用多层感知器对用户行为数据进行编码。为了进一步提高推荐准确性,这项工作构建了一个知识图谱,该图谱整合了音乐领域的关键实体及其关系,并将它们与提取的特征向量相融合。知识图谱为平台提供了丰富的语义信息和关系数据,帮助模型更好地理解用户需求与音乐内容之间的相关性,从而提高推荐结果的准确性和个性化程度。基于不同数据集的实验分析表明,所提出的音乐推荐平台在多个关键性能指标上表现良好。特别是在不同的TOP-K条件下,准确率达到0.90,显著超过协同过滤和基于内容的推荐方法。此外,该平台在处理稀疏数据时能够保持较高的准确率,展现出更强的鲁棒性和适应性。该平台在整体性能方面具有显著优势,为用户提供了更可靠、高效的推荐服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验