Niglas Marili, Baxan Nicoleta, Ashek Ali, Zhao Lin, Duan Jinming, O'Regan Declan, Dawes Timothy J W, Nien-Chen Chen, Xie Chongyang, Bai Wenjia, Zhao Lan
National Heart and Lung Institute Imperial College London London UK.
Biological Imaging Centre Imperial College London London UK.
Pulm Circ. 2025 May 12;15(2):e70092. doi: 10.1002/pul2.70092. eCollection 2025 Apr.
Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.
基于人工智能的心脏运动映射可为肺动脉高压(PH)疾病进展及其对心脏的影响提供预测性见解。我们提出了一种自动化深度学习流程,用于在PH啮齿动物模型中进行双心室分割和三维壁运动分析,以推动临床研究进展。从使用野百合碱(MCT)和苏金缺氧(SuHx)诱导的PH大鼠纵向收集了163个短轴心脏磁共振扫描数据集,并用于训练用于自动分割的全卷积网络。该模型对每次扫描的注释在1秒内完成,精度较高(Dice系数> 0.92)。通过高分辨率图谱拟合生成三维心脏网格模型,并计算舒张末期和收缩末期之间的局部壁运动。与健康对照相比,在PH大鼠中观察到明显的右心室运动减退(MCT组为-37.7% ± 12.2;SuHx组为-38.6% ± 6.9),这主要归因于基底纵向和心尖径向运动的丧失。这种针对大鼠的自动化双心室分析流程,为啮齿动物研究提供了一种高效且新颖的转化工具,与临床心脏成像人工智能的发展相契合。