Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, SE, Sweden.
Data Sciences and Quantitative Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, SE, Sweden.
Sci Rep. 2022 Jun 2;12(1):9193. doi: 10.1038/s41598-022-12378-z.
Automated segmentation of human cardiac magnetic resonance datasets has been steadily improving during recent years. Similar applications would be highly useful to improve and speed up the studies of cardiac function in rodents in the preclinical context. However, the transfer of such segmentation methods to the preclinical research is compounded by the limited number of datasets and lower image resolution. In this paper we present a successful application of deep architectures 3D cardiac segmentation for rats in preclinical contexts which to our knowledge has not yet been reported. We developed segmentation models that expand on the standard U-Net architecture and evaluated models separately trained for systole and diastole phases (2MSA) and a single model trained for all phases (1MSA). Furthermore, we calibrated model outputs using a Gaussian process (GP)-based prior to improve phase selection. The resulting models approach human performance in terms of left ventricular segmentation quality and ejection fraction (EF) estimation in both 1MSA and 2MSA settings (Sørensen-Dice score 0.91 ± 0.072 and 0.93 ± 0.032, respectively). 2MSA achieved a mean absolute difference between estimated and reference EF of 3.5 ± 2.5%, while 1MSA resulted in 4.1 ± 3.0%. Applying GPs to 1MSA enabled automating systole and diastole phase selection. Both segmentation approaches (1MSA and 2MSA) were statistically equivalent. Combined with a proposed cardiac phase selection strategy, our work presents an important first step towards a fully automated segmentation pipeline in the context of rat cardiac analysis.
近年来,人类心脏磁共振数据集的自动分割技术一直在稳步提高。类似的应用将非常有助于改善和加速临床前啮齿动物心脏功能的研究。然而,将这些分割方法转移到临床前研究中,受到了数据集数量有限和图像分辨率较低的限制。在本文中,我们成功地将深度架构 3D 心脏分割应用于临床前大鼠,据我们所知,这在以前的研究中尚未报道。我们开发了扩展标准 U-Net 架构的分割模型,并分别评估了针对收缩期和舒张期(2MSA)以及针对所有相位(1MSA)的单个模型的模型。此外,我们使用基于高斯过程(GP)的先验来校准模型输出,以改善相位选择。结果表明,在左心室分割质量和射血分数(EF)估计方面,这些模型的性能接近人类,无论是在 1MSA 还是 2MSA 环境下(Sørensen-Dice 评分分别为 0.91±0.072 和 0.93±0.032)。2MSA 估计的 EF 与参考 EF 的平均绝对差值为 3.5±2.5%,而 1MSA 则为 4.1±3.0%。将 GP 应用于 1MSA 可以实现收缩期和舒张期的自动选择。两种分割方法(1MSA 和 2MSA)在统计学上是等效的。结合提出的心脏相位选择策略,我们的工作代表了在大鼠心脏分析中实现全自动分割流水线的重要的第一步。