用于口腔癌早期检测和精准治疗的人工智能驱动临床决策支持系统:综述

Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review.

作者信息

Karuppan Perumal Manoj Kumar, Rajan Renuka Remya, Kumar Subbiah Suresh, Manickam Natarajan Prabhu

机构信息

Centre for Stem Cell Mediated Advanced Research Therapeutics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates.

出版信息

Front Oral Health. 2025 Apr 28;6:1592428. doi: 10.3389/froh.2025.1592428. eCollection 2025.

Abstract

Oral cancer (OC) is a significant global health burden, with life-saving improvements in survival and outcomes being dependent on early diagnosis and precise treatment planning. However, diagnosis and treatment planning are predicated on the synthesis of complicated information derived from clinical assessment, imaging, histopathology and patient histories. Artificial intelligence-based clinical decision support systems (AI-CDSS) provides a viable solution that can be implemented via advanced methodologies for data analysis, and synthesis for better diagnostic and prognostic evaluation. This review presents AI-CDSS as a promising solution through advanced methodologies for comprehensive data analysis. In addition, it examines current implementations of AI-CDSS that facilitate early OC detection, precise staging, and personalized treatment planning by processing multimodal patient information through machine learning, computer vision, and natural language processing. These systems effectively interpret clinical results, identify critical disease patterns (including clinical stage, site, tumor dimensions, histopathologic grading, and molecular profiles), and construct comprehensive patient profiles. This comprehensive AI-CDSS approach allows for early cancer detection, a reduction in diagnostic delays and improved intervention outcomes. Moreover, the AI-CDSS also optimizes treatment plans on the basis of unique patient parameters, tumor stages and risk factors, providing personalized therapy.

摘要

口腔癌(OC)是一项重大的全球健康负担,生存和治疗结果的挽救性改善取决于早期诊断和精确的治疗规划。然而,诊断和治疗规划基于从临床评估、影像学、组织病理学和患者病史中获取的复杂信息的综合分析。基于人工智能的临床决策支持系统(AI-CDSS)提供了一种可行的解决方案,可通过先进的数据分析和综合方法来实施,以实现更好的诊断和预后评估。本综述通过先进的综合数据分析方法,将AI-CDSS呈现为一种有前景的解决方案。此外,它还探讨了AI-CDSS的当前应用,这些应用通过机器学习、计算机视觉和自然语言处理来处理多模态患者信息,从而促进早期口腔癌检测、精确分期和个性化治疗规划。这些系统能有效解读临床结果,识别关键疾病模式(包括临床分期、部位、肿瘤大小、组织病理学分级和分子特征),并构建全面的患者档案。这种全面的AI-CDSS方法能够实现早期癌症检测,减少诊断延迟并改善干预结果。此外,AI-CDSS还根据患者的独特参数、肿瘤分期和风险因素优化治疗计划,提供个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c7/12066789/d62c88fbe3d4/froh-06-1592428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索