Endo Mark, Nerrise Favour, Zhao Qingyu, Sullivan Edith V, Fei-Fei Li, Henderson Victor W, Pohl Kilian M, Poston Kathleen L, Adeli Ehsan
Department of Computer Science, Stanford University, Stanford, CA, USA.
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Nat Mach Intell. 2024 Sep;6(9):1034-1045. doi: 10.1038/s42256-024-00882-y. Epub 2024 Aug 9.
Neurodegenerative diseases manifest different motor and cognitive signs and symptoms that are highly heterogeneous. Parsing these heterogeneities may lead to an improved understanding of underlying disease mechanisms; however current methods are dependent on clinical assessments and somewhat arbitrary choice of behavioral tests. Herein, we present a data-driven subtyping approach using video-captured human and functional connectivity (FC) from resting-state (rs)-fMRI. We applied our framework to a cohort of individuals at different stages of Parkinson's disease (PD). The process mapped the data to low-dimensional measures by projecting them onto a canonical correlation space that identified three PD subtypes: Subtype I was characterized by motor difficulties and poor visuospatial abilities; Subtype II exhibited difficulties in non-motor components of activities of daily living and motor complications (dyskinesias and motor fluctuations); and Subtype III was characterized by predominant tremor symptoms. We conducted a convergent validity analysis by comparing our approach to existing and widely used approaches. The compared approaches yielded subtypes that were adequately well-clustered in the motion-brain representation space we created to delineate subtypes. Our data-driven approach, contrary to other forms of subtyping, derived biomarkers predictive of motion impairment and subtype memberships that were captured objectively by digital videos.
神经退行性疾病表现出高度异质性的不同运动和认知体征及症状。剖析这些异质性可能有助于更好地理解潜在的疾病机制;然而,目前的方法依赖于临床评估以及对行为测试的某种随意选择。在此,我们提出一种数据驱动的亚型分类方法,该方法使用视频捕捉的人类行为以及静息态功能磁共振成像(rs-fMRI)的功能连接(FC)。我们将我们的框架应用于处于帕金森病(PD)不同阶段的一组个体。该过程通过将数据投影到一个典型相关空间,将数据映射为低维测量值,从而识别出三种PD亚型:亚型I的特征是运动困难和视觉空间能力差;亚型II在日常生活活动的非运动成分以及运动并发症(异动症和运动波动)方面表现出困难;亚型III的特征是主要表现为震颤症状。我们通过将我们的方法与现有的广泛使用的方法进行比较,进行了收敛效度分析。所比较的方法产生的亚型在我们为描绘亚型而创建的运动-脑表征空间中得到了充分良好的聚类。与其他亚型分类形式不同,我们的数据驱动方法得出了可预测运动损伤和亚型归属的生物标志物,这些标志物可通过数字视频客观地捕捉到。