Suppr超能文献

基于数据驱动发现神经退行性疾病中与运动相关的异质性

Data-Driven Discovery of Movement-Linked Heterogeneity in Neurodegenerative Diseases.

作者信息

Endo Mark, Nerrise Favour, Zhao Qingyu, Sullivan Edith V, Fei-Fei Li, Henderson Victor W, Pohl Kilian M, Poston Kathleen L, Adeli Ehsan

机构信息

Department of Computer Science, Stanford University, Stanford, CA, USA.

Department of Electrical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Mach Intell. 2024 Sep;6(9):1034-1045. doi: 10.1038/s42256-024-00882-y. Epub 2024 Aug 9.

Abstract

Neurodegenerative diseases manifest different motor and cognitive signs and symptoms that are highly heterogeneous. Parsing these heterogeneities may lead to an improved understanding of underlying disease mechanisms; however current methods are dependent on clinical assessments and somewhat arbitrary choice of behavioral tests. Herein, we present a data-driven subtyping approach using video-captured human and functional connectivity (FC) from resting-state (rs)-fMRI. We applied our framework to a cohort of individuals at different stages of Parkinson's disease (PD). The process mapped the data to low-dimensional measures by projecting them onto a canonical correlation space that identified three PD subtypes: Subtype I was characterized by motor difficulties and poor visuospatial abilities; Subtype II exhibited difficulties in non-motor components of activities of daily living and motor complications (dyskinesias and motor fluctuations); and Subtype III was characterized by predominant tremor symptoms. We conducted a convergent validity analysis by comparing our approach to existing and widely used approaches. The compared approaches yielded subtypes that were adequately well-clustered in the motion-brain representation space we created to delineate subtypes. Our data-driven approach, contrary to other forms of subtyping, derived biomarkers predictive of motion impairment and subtype memberships that were captured objectively by digital videos.

摘要

神经退行性疾病表现出高度异质性的不同运动和认知体征及症状。剖析这些异质性可能有助于更好地理解潜在的疾病机制;然而,目前的方法依赖于临床评估以及对行为测试的某种随意选择。在此,我们提出一种数据驱动的亚型分类方法,该方法使用视频捕捉的人类行为以及静息态功能磁共振成像(rs-fMRI)的功能连接(FC)。我们将我们的框架应用于处于帕金森病(PD)不同阶段的一组个体。该过程通过将数据投影到一个典型相关空间,将数据映射为低维测量值,从而识别出三种PD亚型:亚型I的特征是运动困难和视觉空间能力差;亚型II在日常生活活动的非运动成分以及运动并发症(异动症和运动波动)方面表现出困难;亚型III的特征是主要表现为震颤症状。我们通过将我们的方法与现有的广泛使用的方法进行比较,进行了收敛效度分析。所比较的方法产生的亚型在我们为描绘亚型而创建的运动-脑表征空间中得到了充分良好的聚类。与其他亚型分类形式不同,我们的数据驱动方法得出了可预测运动损伤和亚型归属的生物标志物,这些标志物可通过数字视频客观地捕捉到。

相似文献

6
Transcranial direct current stimulation (tDCS) for idiopathic Parkinson's disease.经颅直流电刺激治疗特发性帕金森病
Cochrane Database Syst Rev. 2016 Jul 18;7(7):CD010916. doi: 10.1002/14651858.CD010916.pub2.
7
Interventions for improving adherence to amblyopia treatments in children.改善儿童弱视治疗依从性的干预措施。
Cochrane Database Syst Rev. 2025 Jul 2;7(7):CD015820. doi: 10.1002/14651858.CD015820.pub2.
10
Occupational therapy for cognitive impairment in stroke patients.脑卒中患者认知障碍的作业治疗。
Cochrane Database Syst Rev. 2022 Mar 29;3(3):CD006430. doi: 10.1002/14651858.CD006430.pub3.

本文引用的文献

7
The inconsistency and instability of Parkinson's disease motor subtypes.帕金森病运动亚型的不一致性和不稳定性。
Parkinsonism Relat Disord. 2021 Jul;88:13-18. doi: 10.1016/j.parkreldis.2021.05.016. Epub 2021 May 21.
8
Brain Network Oscillations During Gait in Parkinson's Disease.帕金森病步态期间的脑网络振荡
Front Hum Neurosci. 2020 Oct 23;14:568703. doi: 10.3389/fnhum.2020.568703. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验