Endo Mark, Poston Kathleen L, Sullivan Edith V, Fei-Fei Li, Pohl Kilian M, Adeli Ehsan
Stanford University, Stanford, CA 94305, USA.
SRI International, Menlo Park, CA 94025, USA.
Med Image Comput Comput Assist Interv. 2022 Sep;13438:130-139. doi: 10.1007/978-3-031-16452-1_13. Epub 2022 Sep 16.
Parkinson's disease (PD) is a neurological disorder that has a variety of observable motor-related symptoms such as slow movement, tremor, muscular rigidity, and impaired posture. PD is typically diagnosed by evaluating the severity of motor impairments according to scoring systems such as the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Automated severity prediction using video recordings of individuals provides a promising route for non-intrusive monitoring of motor impairments. However, the limited size of PD gait data hinders model ability and clinical potential. Because of this clinical data scarcity and inspired by the recent advances in self-supervised large-scale language models like GPT-3, we use human motion forecasting as an effective self-supervised pre-training task for the estimation of motor impairment severity. We introduce , Gait Forecasting and impairment estimation transforMer, which is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict MDS-UPDRS gait impairment severity. Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F score of 0.76, precision of 0.79, and recall of 0.75. Using GaitForeMer, we show how public human movement data repositories can assist clinical use cases through learning universal motion representations. The code is available at https://github.com/markendo/GaitForeMer.
帕金森病(PD)是一种神经系统疾病,具有多种可观察到的与运动相关的症状,如运动迟缓、震颤、肌肉僵硬和姿势受损。PD通常根据运动障碍协会统一帕金森病评定量表(MDS-UPDRS)等评分系统评估运动障碍的严重程度来进行诊断。利用个体的视频记录进行自动严重程度预测为非侵入性监测运动障碍提供了一条很有前景的途径。然而,PD步态数据的有限规模阻碍了模型能力和临床潜力。由于这种临床数据的稀缺性,并受GPT-3等自监督大规模语言模型近期进展的启发,我们将人体运动预测作为一种有效的自监督预训练任务,用于估计运动障碍的严重程度。我们引入了步态预测与损伤估计变换器(Gait Forecasting and impairment estimation transforMer,GaitForeMer),它首先在公共数据集上进行预训练以预测步态运动,然后应用于临床数据以预测MDS-UPDRS步态损伤严重程度。我们的方法比以前仅依赖临床数据的方法有大幅提升,F分数达到0.76,精确率为0.79,召回率为0.75。使用GaitForeMer,我们展示了公共人体运动数据存储库如何通过学习通用运动表示来辅助临床应用案例。代码可在https://github.com/markendo/GaitForeMer获取。