Mercan Doina-Antonia, Tudorache Trifa Dana-Ionela, Niculescu Adelina-Gabriela, Mogoantă Laurenţiu, Mogoşanu George Dan, Bîrcă Alexandra Cătălina, Vasile Bogdan Ștefan, Hudiță Ariana, Voinea Ionela Cristina, Stan Miruna S, Hadibarata Tony, Mihaiescu Dan Eduard, Grumezescu Alexandru Mihai, Alberts Adina
Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania.
Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania.
Nanomaterials (Basel). 2025 Apr 22;15(9):637. doi: 10.3390/nano15090637.
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. FeO nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and uniform particle formation. The resulting FeO/SA nanostructures were further modified with either silver or copper oxide to form iron oxide nanocomposites with enhanced antimicrobial functionality. These nanocomposites were subsequently integrated into silica aerogel matrices using a dip-coating approach to improve surface dispersion, structural stability, and biocompatibility. The structural and morphological properties of the samples were investigated using XRD, FT-IR, TEM with SAED analysis, and Raman microscopy. In vitro cytotoxicity and antimicrobial assays demonstrated that FeO/SA-Ag and FeO/SA-CuO exhibit potent antibacterial activity and cell type-dependent biocompatibility. In vivo biodistribution studies showed no accumulation in major organs and selective clearance via the spleen, validating the systemic safety of the platform. These findings highlight the potential of the synthesized nanocomposites as biocompatible, antimicrobial coatings for advanced biomedical surfaces.
本研究介绍了通过微流控辅助合成和合成后表面改性相结合的两步法制备杂化氧化铁纳米复合材料。使用三维涡旋型微流控芯片合成了FeO纳米颗粒并同时用水杨酸进行功能化,从而实现快速且均匀的颗粒形成。所得的FeO/SA纳米结构进一步用氧化银或氧化铜进行改性,以形成具有增强抗菌功能的氧化铁纳米复合材料。随后,使用浸涂法将这些纳米复合材料整合到二氧化硅气凝胶基质中,以改善表面分散性、结构稳定性和生物相容性。使用XRD、FT-IR、带有SAED分析的TEM和拉曼显微镜对样品的结构和形态特性进行了研究。体外细胞毒性和抗菌试验表明,FeO/SA-Ag和FeO/SA-CuO表现出强大的抗菌活性和细胞类型依赖性生物相容性。体内生物分布研究表明,主要器官中没有积累,且通过脾脏进行选择性清除,验证了该平台的全身安全性。这些发现突出了合成纳米复合材料作为用于先进生物医学表面的生物相容性抗菌涂层的潜力。
Nanomaterials (Basel). 2025-4-22
Mater Sci Eng C Mater Biol Appl. 2016-9-1
J Colloid Interface Sci. 2017-10-3
Nanomaterials (Basel). 2022-12-15
Nanomaterials (Basel). 2024-5-21
Nanomaterials (Basel). 2025-6-11
Mater Today Bio. 2025-2-25
Antibiotics (Basel). 2025-2-18
J Funct Biomater. 2024-11-12
Cell Death Discov. 2024-11-11
RSC Adv. 2024-10-22
Nanotechnology. 2024-11-5
Nanomaterials (Basel). 2024-5-21