文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于混合氧化铁纳米颗粒的抗菌涂层

Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles.

作者信息

Mercan Doina-Antonia, Tudorache Trifa Dana-Ionela, Niculescu Adelina-Gabriela, Mogoantă Laurenţiu, Mogoşanu George Dan, Bîrcă Alexandra Cătălina, Vasile Bogdan Ștefan, Hudiță Ariana, Voinea Ionela Cristina, Stan Miruna S, Hadibarata Tony, Mihaiescu Dan Eduard, Grumezescu Alexandru Mihai, Alberts Adina

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania.

Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania.

出版信息

Nanomaterials (Basel). 2025 Apr 22;15(9):637. doi: 10.3390/nano15090637.


DOI:10.3390/nano15090637
PMID:40358254
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12073745/
Abstract

This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. FeO nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and uniform particle formation. The resulting FeO/SA nanostructures were further modified with either silver or copper oxide to form iron oxide nanocomposites with enhanced antimicrobial functionality. These nanocomposites were subsequently integrated into silica aerogel matrices using a dip-coating approach to improve surface dispersion, structural stability, and biocompatibility. The structural and morphological properties of the samples were investigated using XRD, FT-IR, TEM with SAED analysis, and Raman microscopy. In vitro cytotoxicity and antimicrobial assays demonstrated that FeO/SA-Ag and FeO/SA-CuO exhibit potent antibacterial activity and cell type-dependent biocompatibility. In vivo biodistribution studies showed no accumulation in major organs and selective clearance via the spleen, validating the systemic safety of the platform. These findings highlight the potential of the synthesized nanocomposites as biocompatible, antimicrobial coatings for advanced biomedical surfaces.

摘要

本研究介绍了通过微流控辅助合成和合成后表面改性相结合的两步法制备杂化氧化铁纳米复合材料。使用三维涡旋型微流控芯片合成了FeO纳米颗粒并同时用水杨酸进行功能化,从而实现快速且均匀的颗粒形成。所得的FeO/SA纳米结构进一步用氧化银或氧化铜进行改性,以形成具有增强抗菌功能的氧化铁纳米复合材料。随后,使用浸涂法将这些纳米复合材料整合到二氧化硅气凝胶基质中,以改善表面分散性、结构稳定性和生物相容性。使用XRD、FT-IR、带有SAED分析的TEM和拉曼显微镜对样品的结构和形态特性进行了研究。体外细胞毒性和抗菌试验表明,FeO/SA-Ag和FeO/SA-CuO表现出强大的抗菌活性和细胞类型依赖性生物相容性。体内生物分布研究表明,主要器官中没有积累,且通过脾脏进行选择性清除,验证了该平台的全身安全性。这些发现突出了合成纳米复合材料作为用于先进生物医学表面的生物相容性抗菌涂层的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/9e0d641ce6f1/nanomaterials-15-00637-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/e8e8d09090d9/nanomaterials-15-00637-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/8095951e1846/nanomaterials-15-00637-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/c2a480744b9a/nanomaterials-15-00637-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/572bd2b8593b/nanomaterials-15-00637-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/6f9db4edb1da/nanomaterials-15-00637-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/e31643b662be/nanomaterials-15-00637-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/29a74b85fd03/nanomaterials-15-00637-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/ad67916816f4/nanomaterials-15-00637-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/cb9dbbb7ed33/nanomaterials-15-00637-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/adae1ead43ec/nanomaterials-15-00637-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/a563f9657d96/nanomaterials-15-00637-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/5e54265f404b/nanomaterials-15-00637-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/c463e8682b97/nanomaterials-15-00637-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/2a6e04d8bba5/nanomaterials-15-00637-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/9e0d641ce6f1/nanomaterials-15-00637-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/e8e8d09090d9/nanomaterials-15-00637-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/8095951e1846/nanomaterials-15-00637-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/c2a480744b9a/nanomaterials-15-00637-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/572bd2b8593b/nanomaterials-15-00637-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/6f9db4edb1da/nanomaterials-15-00637-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/e31643b662be/nanomaterials-15-00637-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/29a74b85fd03/nanomaterials-15-00637-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/ad67916816f4/nanomaterials-15-00637-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/cb9dbbb7ed33/nanomaterials-15-00637-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/adae1ead43ec/nanomaterials-15-00637-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/a563f9657d96/nanomaterials-15-00637-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/5e54265f404b/nanomaterials-15-00637-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/c463e8682b97/nanomaterials-15-00637-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/2a6e04d8bba5/nanomaterials-15-00637-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46c5/12073745/9e0d641ce6f1/nanomaterials-15-00637-g015a.jpg

相似文献

[1]
Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2025-4-22

[2]
Synthesis and characterization of magnetic Ag-FeO@polymer hybrid nanocomposite systems with promising antibacterial application.

Drug Dev Ind Pharm. 2023-12

[3]
Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

Mater Sci Eng C Mater Biol Appl. 2016-9-1

[4]
Fabrication of charge reversible graphene oxide-based nanocomposite with multiple antibacterial modes and magnetic recyclability.

J Colloid Interface Sci. 2017-10-3

[5]
Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance.

Bioact Mater. 2017-6-7

[6]
Ag-Decorated Iron Oxides-Silica Magnetic Nanocomposites with Antimicrobial and Photocatalytic Activity.

Nanomaterials (Basel). 2022-12-15

[7]
Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design.

Ultrason Sonochem. 2023-5

[8]
New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell FeO-SA Nanoparticle Synthesis.

Nanomaterials (Basel). 2024-5-21

[9]
Exploring the antibacterial potential of magnetite/Quince seed mucilage/Ag nanocomposite: Synthesis, characterization, and activity assessment.

Int J Biol Macromol. 2023-9-30

[10]
Assessment of the Effect of Surface Modification of Metal Oxides on Silver Nanoparticles: Optical Properties and Potential Toxicity.

Cell Biochem Biophys. 2024-6

引用本文的文献

[1]
New 3D Spiral Microfluidic Platform Tested for FeO@SA Nanoparticle Synthesis.

Molecules. 2025-7-8

[2]
Advancements in Nanotechnology for Spinal Surgery: Innovations in Spinal Fixation Devices for Enhanced Biomechanical Performance and Osteointegration.

Nanomaterials (Basel). 2025-7-10

[3]
Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives.

Nanomaterials (Basel). 2025-6-11

[4]
Microfluidic Synthesis of Magnetic Silica Aerogels for Efficient Pesticide Removal from Water.

Gels. 2025-6-17

本文引用的文献

[1]
Porous Iron Oxide Core-Gold Satellite Nanocomposite: A Cost-Effective and Recyclable Solution for Photocatalytic Wastewater Treatment.

Small Sci. 2023-12-24

[2]
Nature-inspired surface modification strategies for implantable devices.

Mater Today Bio. 2025-2-25

[3]
Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications.

Antibiotics (Basel). 2025-2-18

[4]
Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects.

Int J Mol Sci. 2024-11-8

[5]
Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater.

Nanomaterials (Basel). 2024-11-19

[6]
Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs).

J Funct Biomater. 2024-11-12

[7]
Advances in smart nanotechnology-supported photodynamic therapy for cancer.

Cell Death Discov. 2024-11-11

[8]
Nanomedicines as a cutting-edge solution to combat antimicrobial resistance.

RSC Adv. 2024-10-22

[9]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[10]
New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell FeO-SA Nanoparticle Synthesis.

Nanomaterials (Basel). 2024-5-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索