Costăchescu Bogdan, Moldoveanu Elena-Theodora, Niculescu Adelina-Gabriela, Grumezescu Alexandru Mihai, Teleanu Daniel Mihai
Department of Neurosurgery, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
"Prof. Dr. N. Oblu" Emergency Clinical Hospital, 700309 Iasi, Romania.
Nanomaterials (Basel). 2025 Jul 10;15(14):1073. doi: 10.3390/nano15141073.
Spinal injuries have a major impact on patients' quality of life due to the implacable consequences they bring, such as reduced mobility and loss of flexibility, in most cases requiring surgery to restore spinal stability and functionality. In this respect, spinal fixation devices represent an important strategy to stabilize the spine after severe injuries or degenerative conditions, providing structural support and preserving spinal function. However, at the moment, the materials used to manufacture spinal implants present numerous disadvantages (e.g., Young's modulus larger than cortical bone, which can produce bone resorption and implant enlargement) that can lead to implant failure. In this context, nanotechnology can offer promising solutions, bringing improved properties (e.g., biocompatibility, osseointegration, and increased mechanical performance) that increase the potential for obtaining devices customized to patients' needs. Thus, the present work aims to present an overview of the types of nanocoating surface modification, the impact of rough and porous implant surfaces, and the integration of bioactive nanoparticles that reduce the risk of infection and implant rejection. In addition, incorporating 3D printing technology and the use of biodegradable materials into the discussion provides a valuable perspective for future studies in this field. Although the emerging results are encouraging, further studies to assess the long-term safety of implant coatings are needed.
脊柱损伤对患者的生活质量有重大影响,因为它们会带来诸如行动不便和灵活性丧失等难以避免的后果,在大多数情况下需要通过手术来恢复脊柱的稳定性和功能。在这方面,脊柱固定装置是严重损伤或退行性疾病后稳定脊柱的重要策略,可提供结构支撑并保持脊柱功能。然而,目前用于制造脊柱植入物的材料存在许多缺点(例如,杨氏模量大于皮质骨,这会导致骨吸收和植入物增大),可能导致植入物失效。在这种背景下,纳米技术可以提供有前景的解决方案,带来改善的性能(如生物相容性、骨整合和增强的机械性能),增加获得根据患者需求定制的装置的可能性。因此,本工作旨在概述纳米涂层表面改性的类型、粗糙和多孔植入物表面的影响以及生物活性纳米颗粒的整合,这些可降低感染和植入物排斥的风险。此外,将3D打印技术和可生物降解材料的使用纳入讨论为该领域的未来研究提供了有价值的视角。尽管新出现的结果令人鼓舞,但仍需要进一步研究来评估植入物涂层的长期安全性。
J Clin Orthop Trauma. 2025-4-24
Arch Ital Urol Androl. 2025-6-30
2025-1
Cochrane Database Syst Rev. 2015-12-1
Nanomaterials (Basel). 2025-4-22
J Funct Biomater. 2025-3-5
Polymers (Basel). 2024-12-28
J Nanobiotechnology. 2024-11-15
J Funct Biomater. 2024-9-12
Polymers (Basel). 2024-8-27