Suppr超能文献

一种用于钢板表面的实时缺陷检测算法:StarNet-GSConv-RetC3检测变压器(SSR-DETR)。

A real-time defect detection algorithm for steel plate surfaces: the StarNet-GSConv-RetC3 detection transformer (SSR-DETR).

作者信息

Zhou Zhuguo, Lu Yujun, Lv Liye

机构信息

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.

出版信息

Ann N Y Acad Sci. 2025 Jun;1548(1):277-288. doi: 10.1111/nyas.15332. Epub 2025 May 13.

Abstract

In view of the problems in industrial steel plate surface defect detection, such as high model complexity, insufficient recognition of small targets, and inefficient hardware deployment, this study proposes the StarNet-GSConv-RetC3 detection transformer (SSR-DETR) lightweight framework. The framework comprises a StarNet backbone network and an innovative star operation optimization structure to reduce computational complexity while enhancing feature representation capabilities. In the feature fusion stage, the RetBlock CSP bottleneck with 3 convolutions (RetC3) module with an explicit attenuation mechanism is designed to enhance the extraction of geometric features of microscopic defects by combining two-dimensional spatial priors, and grouped spatial convolution (GSConv) is used to optimize the aggregation of multiscale features. Experiments show that the algorithm achieves a mean average precision (mAP) of 88.2% and a classification accuracy of 92.0% on the Northeastern University steel surface defect (NEU-DET) dataset, which is 4.8% and 3.7% higher than the baseline model, respectively. Meanwhile, the model's computational load and size are reduced by 59.5% and 47.8%, respectively. Actual deployment tests show that this algorithm operates at 98.1 frames per second (FPS) on personal computer platforms and at 40.3 FPS, with a single-frame processing time of 24.8 ms, on the RK3568 embedded system, fully meeting the comprehensive requirements of industrial scenarios.

摘要

针对工业钢板表面缺陷检测中存在的模型复杂度高、小目标识别不足以及硬件部署效率低下等问题,本研究提出了StarNet-GSConv-RetC3检测变压器(SSR-DETR)轻量级框架。该框架由一个StarNet骨干网络和一个创新的星型操作优化结构组成,以降低计算复杂度,同时增强特征表示能力。在特征融合阶段,设计了具有显式衰减机制的带有3个卷积的RetBlock CSP瓶颈(RetC3)模块,通过结合二维空间先验来增强微观缺陷几何特征的提取,并使用分组空间卷积(GSConv)来优化多尺度特征的聚合。实验表明,该算法在东北大学钢表面缺陷(NEU-DET)数据集上的平均精度均值(mAP)达到88.2%,分类准确率达到92.0%,分别比基线模型高4.8%和3.7%。同时,模型的计算负载和大小分别减少了59.5%和47.8%。实际部署测试表明,该算法在个人计算机平台上的运行速度为每秒98.1帧(FPS),在RK3568嵌入式系统上的运行速度为40.3 FPS,单帧处理时间为24.8毫秒,完全满足工业场景的综合要求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验