Suppr超能文献

利用水疗数据的模糊推理系统预测沐浴后体温

Prediction of Post-Bath Body Temperature Using Fuzzy Inference Systems with Hydrotherapy Data.

作者信息

Han Feng, Tang Minghui, Zhang Ziheng, Hirata Kenji, Okugawa Yoji, Matsuda Yunosuke, Nakaya Jun, Ogasawara Katsuhiko, Kudo Kohsuke

机构信息

Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo 060-8638, Hokkaido, Japan.

Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita-Ku, Sapporo 060-8638, Hokkaido, Japan.

出版信息

Healthcare (Basel). 2025 Apr 23;13(9):972. doi: 10.3390/healthcare13090972.

Abstract

Widely known for its therapeutic benefits, hydrotherapy utilizes water's physical properties, such as temperature, hydrostatic pressure, and viscosity, to influence physiological responses. Among these, body temperature modulation plays a crucial role in enhancing circulatory function, muscle relaxation, and metabolic processes. While hydrotherapy can improve systemic health, particularly cardiac function, improper temperature control poses risks, especially for vulnerable populations such as the elderly or individuals with thermoregulatory impairments. Therefore, accurately predicting post-bath body temperature is essential for ensuring safety and optimizing therapeutic outcomes. This study explored the use of fuzzy inference systems to predict post-bath body temperature, leveraging an adaptive neuro-fuzzy inference system, evolutionary fuzzy inference system (EVOFIS), and enhanced Takagi-Sugeno fuzzy system. These models were compared with random forest and support vector machine models using hydrotherapy-related data. The results show that EVOFIS outperformed other models, particularly in predicting deep body temperature, which is clinically significant as it is closely linked to core physiological regulation. The ability to accurately forecast deep-temperature dynamics enables proactive management of hyperthermia risk, supporting safer hydrotherapy practices for at-risk groups. These findings highlight the potential of FIS-based models for non-invasive temperature prediction, contributing to enhanced safety and personalization in hydrotherapy applications.

摘要

水疗法因其治疗功效而广为人知,它利用水的物理特性,如温度、静水压力和粘度,来影响生理反应。其中,体温调节在增强循环功能、肌肉放松和代谢过程中起着关键作用。虽然水疗法可以改善全身健康,尤其是心脏功能,但温度控制不当会带来风险,特别是对老年人或体温调节功能受损的个体等弱势群体而言。因此,准确预测沐浴后的体温对于确保安全和优化治疗效果至关重要。本研究探索了使用模糊推理系统来预测沐浴后的体温,利用了自适应神经模糊推理系统、进化模糊推理系统(EVOFIS)和增强型高木-关野模糊系统。使用与水疗法相关的数据将这些模型与随机森林和支持向量机模型进行了比较。结果表明,EVOFIS的表现优于其他模型,尤其是在预测深部体温方面,这在临床上具有重要意义,因为它与核心生理调节密切相关。准确预测深部体温动态的能力能够主动管理体温过高的风险,为高危人群支持更安全的水疗法实践。这些发现凸显了基于模糊推理系统的模型在无创温度预测方面的潜力,有助于提高水疗法应用的安全性和个性化程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/12071936/23f96d730c14/healthcare-13-00972-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验