Chuang Chien-Wei, Wu Chung-Kuan, Wu Chao-Hsin, Shia Ben-Chang, Chen Mingchih
Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City 242062, Taiwan.
Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City 242062, Taiwan.
Diagnostics (Basel). 2025 Apr 22;15(9):1063. doi: 10.3390/diagnostics15091063.
Patients with end-stage renal disease (ESRD) are at an increased risk of major adverse cardiac events (MACEs), highlighting the need for accurate risk prediction and personalized interventions. This study aims to develop and evaluate machine learning (ML) models to identify key predictive features and enhance clinical decision-making in MACE risk assessment. A dataset comprising 84 variables, including patient demographics, laboratory findings, and comorbidities, was analyzed using CatBoost, XGBoost, and LightGBM. Feature selection, cross-validation, and SHAP (SHapley Additive exPlanations) analyses were employed to improve model interpretability and clinical relevance. CatBoost exhibited the highest predictive performance among the models tested, achieving an AUC of 0.745 (0.605-0.83) with balanced sensitivity and specificity. Key predictors of MACEs included antiplatelet use, the grade of left ventricular hypertrophy, and serum albumin levels. SHAP analysis enhanced the interpretability of model outputs, supporting clinician-led risk stratification. This study highlights the potential of ML-based predictive modeling to improve MACE risk assessment in patients with ESRD. The findings support the adoption of ML models in clinical workflows by integrating explainable AI methods to enable individualized treatment planning. Future integration with electronic health record systems may facilitate real-time decision-making and enhance patient outcomes.
终末期肾病(ESRD)患者发生主要不良心脏事件(MACE)的风险增加,这凸显了准确风险预测和个性化干预的必要性。本研究旨在开发和评估机器学习(ML)模型,以识别关键预测特征并加强MACE风险评估中的临床决策。使用CatBoost、XGBoost和LightGBM对包含84个变量的数据集进行了分析,这些变量包括患者人口统计学、实验室检查结果和合并症。采用特征选择、交叉验证和SHAP(SHapley加性解释)分析来提高模型的可解释性和临床相关性。在测试的模型中,CatBoost表现出最高的预测性能,在平衡敏感性和特异性的情况下,AUC达到0.745(0.605 - 0.83)。MACE的关键预测因素包括抗血小板药物使用、左心室肥厚程度和血清白蛋白水平。SHAP分析增强了模型输出的可解释性,支持临床医生主导的风险分层。本研究强调了基于ML的预测模型在改善ESRD患者MACE风险评估方面的潜力。研究结果支持通过整合可解释的人工智能方法在临床工作流程中采用ML模型,以实现个性化治疗计划。未来与电子健康记录系统的整合可能会促进实时决策并改善患者预后。