Suppr超能文献

用于快速乳腺病变鉴别诊断的创新型离散多波长近红外光谱(DMW-NIRS)成像:可行性研究

Innovative Discrete Multi-Wavelength Near-Infrared Spectroscopic (DMW-NIRS) Imaging for Rapid Breast Lesion Differentiation: Feasibility Study.

作者信息

Yoon Jiyoung, Han Kyunghwa, Kim Min Jung, Hong Heesun, Han Eunice S, Han Sung-Ho

机构信息

Department of Radiology and Research, Institute of Radiological Science, Yonsei University College of Medicine, Seoul 06134, Republic of Korea.

CTO Division, Olive Healthcare, Seoul 07796, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 Apr 23;15(9):1067. doi: 10.3390/diagnostics15091067.

Abstract

: This study evaluated the role of a discrete multi-wavelength near-infrared spectroscopic (DMW-NIRS) imaging device for rapid breast lesion differentiation. : A total of 62 women (mean age, 49.9 years) with ultrasound (US)-guided biopsy-confirmed breast lesions (37 malignant, 25 benign) were included. A handheld probe equipped with five pairs of light-emitting diodes (LEDs) and photodiodes (PDs) measured lesion-to-normal tissue (L/N) ratios of four chromophores, THC (Total Hemoglobin Concentration), StO, and the Tissue Optical Index (TOI: log10(THC × Water/Lipid)). Lesions were localized using US. Diagnostic performance was assessed for each L/N ratio, with subgroup analysis for BI-RADS 4A lesions. Two adaptive BI-RADS models were developed: Model 1 used TOI thresholds (Youden index), while Model 2 incorporated radiologists' reassessments of US findings integrated with DMW-NIRS results. These models were compared to the initial BI-RADS assessments, conducted by breast-dedicated radiologists. : All L/N ratios significantly differentiated malignant from benign lesions ( < 0.05), with TOI achieving the highest AUC-ROC (0.901; 95% CI: 0.825-0.976). In BI-RADS 4A lesions, all L/N ratios except Lipid significantly differentiated malignancy ( < 0.05), with TOI achieving the highest AUC-ROC (0.902; 95% CI: 0.788-1.000). Model 1 and Model 2 showed superior diagnostic performance (AUC-ROCs: 0.962 and 0.922, respectively), significantly outperforming initial BI-RADS assessments (prospective AUC-ROC: 0.862; retrospective AUC-ROC: 0.866; < 0.05). : Integrating DMW-NIRS findings with US evaluations enhances diagnostic accuracy, particularly for BI-RADS 4A lesions. This novel device offers a rapid, non-invasive, and efficient method to reduce unnecessary biopsies and improve breast cancer diagnostics. Further validation in larger cohorts is warranted.

摘要

本研究评估了一种离散多波长近红外光谱(DMW-NIRS)成像设备在快速鉴别乳腺病变中的作用。共纳入62例经超声(US)引导活检确诊乳腺病变的女性(平均年龄49.9岁),其中恶性病变37例,良性病变25例。一个配备五对发光二极管(LED)和光电二极管(PD)的手持式探头测量了四种发色团、总血红蛋白浓度(THC)、组织氧合(StO)以及组织光学指数(TOI:log10(THC×水/脂质))的病变与正常组织(L/N)比值。病变通过超声进行定位。评估了每个L/N比值的诊断性能,并对BI-RADS 4A类病变进行了亚组分析。开发了两种适应性BI-RADS模型:模型1使用TOI阈值(约登指数),而模型2纳入了放射科医生对超声检查结果的重新评估以及DMW-NIRS结果。将这些模型与乳腺专科放射科医生进行的初始BI-RADS评估进行比较。所有L/N比值均能显著区分恶性病变和良性病变(P<0.05),其中TOI的AUC-ROC最高(0.901;95%CI:0.825-0.976)。在BI-RADS 4A类病变中,除脂质外的所有L/N比值均能显著区分恶性病变(P<0.05),TOI的AUC-ROC最高(0.902;95%CI:0.788-1.000)。模型1和模型2显示出卓越的诊断性能(AUC-ROC分别为0.962和0.922),显著优于初始BI-RADS评估(前瞻性AUC-ROC:0.862;回顾性AUC-ROC:0.866;P<0.05)。将DMW-NIRS检查结果与超声评估相结合可提高诊断准确性,尤其是对于BI-RADS 4A类病变。这种新型设备提供了一种快速、无创且有效的方法,可减少不必要的活检并改善乳腺癌诊断。有必要在更大的队列中进行进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/572a/12071914/7cdc58b9cbaa/diagnostics-15-01067-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验