Suppr超能文献

整合人工智能病变分类、年龄和乳腺影像报告和数据系统(BI-RADS)评估,以减少乳腺超声检查中的良性活检。

Integration of AI lesion classification, age, and BI-RADS assessment to reduce benign biopsies on breast ultrasound.

作者信息

Ju Yan, Zhang Ge, Wan Yi, Wang Gang, Shu Rui, Zhang Panpan, Song Hongping

机构信息

Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

Department of Health Services, Fourth Military Medical University, Xi'an, China.

出版信息

Eur Radiol. 2025 Mar 22. doi: 10.1007/s00330-025-11467-7.

Abstract

OBJECTIVES

To develop and test AI-integrated biopsy avoidance strategies to improve the specificity of screening breast ultrasound (US).

MATERIALS AND METHODS

This retrospective study included consecutive asymptomatic women with BI-RADS 3, 4a, 4b, 4c, or 5 masses on screening breast US exams acquired from two hospitals between December 2019 and December 2020 (development cohort) and June 2020 and December 2020 (external validation cohort). If more than one lesion was present, the most suspicious lesion was analyzed. Logistic regression was used to develop the AI-integrated biopsy avoidance strategies in which BI-RADS 4a masses were downgraded to BI-RADS 3 if the AI classifications were "both planes benign" in all women or "benign and malignant" in the women ≤ 45 years of age. Diagnostic performance metrics were calculated for both cohorts and compared to initial assessments by radiologists using the Wilcoxon rank-sum test for noninferiority of sensitivity (relative noninferiority margin, 5%) and the McNemar test for specificity.

RESULTS

The development and external validation cohorts consisted of 393 women (median age, 45 years [IQR, 40-50 years]) with 101 malignancies and 166 women (median age, 47 years [IQR, 42-51 years]) with 31 malignancies, respectively. The developed strategy improved specificity from 53.3% (72/135; 95% CI: 45.0, 62.1) to 80.7% (109/135; [95% CI: 74.2, 87.5]; p < 0.001) while maintaining sensitivity (both 100% [31/31; 95% CI: 98.9, 100]), and would have avoided 61.7% (37/60 [95% CI: 48.2, 73.7]) of benign biopsies of BI-RADS 4a masses in the external validation cohort.

CONCLUSION

A strategy integrating AI classification in two orthogonal planes, age, and BI-RADS classification improved the specificity of screening breast US while maintaining non-inferior sensitivity.

KEY POINTS

Question How can integrating AI lesion classification, age, and BI-RADS assessment effectively reduce benign biopsies in screening breast ultrasound? Findings A strategy integrating AI classifications, age, and BI-RADS using multivariable logistic regression improved specificity while maintaining non-inferior sensitivity in breast ultrasound screening. Clinical relevance The integration of AI classification in two orthogonal planes, along with patient age and BI-RADS classification, shows potential for reducing benign breast biopsies without compromising sensitivity, leading to more efficient clinical decision-making, reduced patient anxiety, and decreased healthcare resource utilization.

摘要

目的

开发并测试整合人工智能的活检避免策略,以提高乳腺筛查超声(US)的特异性。

材料与方法

这项回顾性研究纳入了2019年12月至2020年12月(开发队列)以及2020年6月至2020年12月(外部验证队列)期间从两家医院获取的乳腺筛查超声检查中具有BI-RADS 3、4a、4b、4c或5类肿块的连续无症状女性。如果存在多个病变,则分析最可疑的病变。使用逻辑回归来制定整合人工智能的活检避免策略,即如果人工智能分类在所有女性中为“双平面良性”或在年龄≤45岁的女性中为“良性和恶性”,则将BI-RADS 4a类肿块降级为BI-RADS 3类。计算两个队列的诊断性能指标,并使用Wilcoxon秩和检验比较放射科医生的初始评估以评估敏感性的非劣效性(相对非劣效性边界为5%),使用McNemar检验评估特异性。

结果

开发队列和外部验证队列分别包括393名女性(中位年龄45岁[四分位间距,40 - 50岁]),其中有101例恶性肿瘤,以及166名女性(中位年龄47岁[四分位间距,42 - 51岁]),其中有31例恶性肿瘤。所制定的策略将特异性从53.3%(72/135;95%置信区间:45.0,62.1)提高到80.7%(109/135;[95%置信区间:74.2,87.5];p < 0.001),同时保持敏感性(均为100%[31/31;95%置信区间:98.9,100]),并且在外部验证队列中可避免61.7%(37/60[95%置信区间:48.2,73.7])的BI-RADS 4a类肿块的良性活检。

结论

一种将两个正交平面的人工智能分类、年龄和BI-RADS分类相结合的策略提高了乳腺筛查超声的特异性,同时保持了非劣效的敏感性。

关键点

问题如何在乳腺筛查超声中整合人工智能病变分类、年龄和BI-RADS评估以有效减少良性活检?研究结果一种使用多变量逻辑回归整合人工智能分类、年龄和BI-RADS的策略在乳腺超声筛查中提高了特异性,同时保持了非劣效的敏感性。临床意义在两个正交平面整合人工智能分类,以及患者年龄和BI-RADS分类,显示出在不降低敏感性的情况下减少良性乳腺活检的潜力,从而实现更高效的临床决策、减轻患者焦虑并减少医疗资源利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验