Suppr超能文献

视网膜微血管特征——心血管疾病中的新型风险分层

Retinal Microvascular Characteristics-Novel Risk Stratification in Cardiovascular Diseases.

作者信息

Rusu Alexandra Cristina, Brînzaniuc Klara, Tinica Grigore, Germanese Clément, Damian Simona Irina, David Sofia Mihaela, Chistol Raluca Ozana

机构信息

Doctoral School of Medicine and Pharmacy, Faculty of Medicine, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania.

Ophthalmology Center-Place de l'Etoile, Belair, 1371 Luxembourg, Luxembourg.

出版信息

Diagnostics (Basel). 2025 Apr 23;15(9):1073. doi: 10.3390/diagnostics15091073.

Abstract

Cardiovascular diseases (CVDs) are responsible for 32.4% of all deaths across the European Union (EU), and several CVD risk scores have been developed, with variable results. Retinal microvascular changes have been proposed as potential biomarkers for cardiovascular risk, especially in coronary heart diseases (CHDs). This study aims to identify the retinal microvascular features associated with CHDs and evaluate their potential use in a CHD screening algorithm in conjunction with traditional risk factors. We performed a two-center cross-sectional study on 120 adult participants-36 patients previously diagnosed with severe CHDs and scheduled for coronary artery bypass graft surgery (CHD group) and 84 healthy controls. A brief medical history and a clinical profile were available for all cases. All patients benefited from optical coherence tomography angiography (OCTA), the use of which allowed several parameters to be quantified for the foveal avascular zone and superficial and deep capillary plexuses. We evaluated the precision of several classification models in identifying patients with CHDs based on traditional risk factors and OCTA characteristics: a conventional logistic regression model and four machine learning algorithms: k-Nearest Neighbors (k-NN), Naive Bayes, Support Vector Machine (SVM) and supervised logistic regression. Conventional multiple logistic regression had a classification accuracy of 78.7% based on traditional risk factors and retinal microvascular features, while machine learning algorithms had higher accuracies: 81% for K-NN and supervised logistic regression, 85.71% for Naive Bayes and 86% for SVM. Novel risk scores developed using machine learning algorithms and based on traditional risk factors and retinal microvascular characteristics could improve the identification of patients with CHDs.

摘要

心血管疾病(CVDs)导致了欧盟(EU)所有死亡人数的32.4%,并且已经开发了几种心血管疾病风险评分,但结果各不相同。视网膜微血管变化已被提议作为心血管风险的潜在生物标志物,尤其是在冠心病(CHDs)中。本研究旨在识别与冠心病相关的视网膜微血管特征,并评估它们与传统风险因素一起在冠心病筛查算法中的潜在用途。我们对120名成年参与者进行了一项两中心横断面研究,其中36名先前被诊断患有严重冠心病并计划进行冠状动脉搭桥手术的患者(冠心病组)和84名健康对照。所有病例都有简要的病史和临床资料。所有患者都接受了光学相干断层扫描血管造影(OCTA)检查,通过该检查可以对黄斑无血管区以及浅层和深层毛细血管丛的几个参数进行量化。我们评估了几种基于传统风险因素和OCTA特征识别冠心病患者的分类模型的精度:一个传统的逻辑回归模型和四种机器学习算法:k近邻(k-NN)、朴素贝叶斯、支持向量机(SVM)和监督逻辑回归。基于传统风险因素和视网膜微血管特征,传统多元逻辑回归的分类准确率为78.7%,而机器学习算法的准确率更高:k-NN和监督逻辑回归为81%,朴素贝叶斯为85.71%,支持向量机为86%。使用机器学习算法并基于传统风险因素和视网膜微血管特征开发的新风险评分可以改善冠心病患者的识别。

相似文献

1
Retinal Microvascular Characteristics-Novel Risk Stratification in Cardiovascular Diseases.
Diagnostics (Basel). 2025 Apr 23;15(9):1073. doi: 10.3390/diagnostics15091073.
3
Retinal and Choroidal Thinning-A Predictor of Coronary Artery Occlusion?
Diagnostics (Basel). 2022 Aug 20;12(8):2016. doi: 10.3390/diagnostics12082016.
4
Foveal Remodeling of Retinal Microvasculature in Parkinson's Disease.
Front Neurosci. 2021 Jul 12;15:708700. doi: 10.3389/fnins.2021.708700. eCollection 2021.
9
Quantitative analysis of retinal microvascular changes in macular telangiectasia type 2 using optical coherence tomography angiography.
PLoS One. 2020 Apr 29;15(4):e0232255. doi: 10.1371/journal.pone.0232255. eCollection 2020.
10
Retinal Microvascular Changes in Internal Carotid Artery Stenosis.
J Clin Med. 2023 Sep 16;12(18):6014. doi: 10.3390/jcm12186014.

本文引用的文献

2
4
Optical coherence tomography angiography in cardiovascular disease.
Prog Cardiovasc Dis. 2024 Nov-Dec;87:60-72. doi: 10.1016/j.pcad.2024.10.011. Epub 2024 Oct 21.
5
Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease.
J Pers Med. 2024 May 9;14(5):501. doi: 10.3390/jpm14050501.
6
Application of ImageJ in Optical Coherence Tomography Angiography (OCT-A): A Literature Review.
J Ophthalmol. 2023 Nov 22;2023:9479183. doi: 10.1155/2023/9479183. eCollection 2023.
7
A narrative review of retinal vascular parameters and the applications (Part I): Measuring methods.
Brain Circ. 2023 Sep 27;9(3):121-128. doi: 10.4103/bc.bc_8_23. eCollection 2023 Jul-Sep.
8
A foundation model for generalizable disease detection from retinal images.
Nature. 2023 Oct;622(7981):156-163. doi: 10.1038/s41586-023-06555-x. Epub 2023 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验