Suppr超能文献

非侵入性视网膜血管分析作为心血管疾病的预测指标

Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease.

作者信息

Iorga Raluca Eugenia, Costin Damiana, Munteanu-Dănulescu Răzvana Sorina, Rezuș Elena, Moraru Andreea Dana

机构信息

Department of Surgery II, Discipline of Ophthalmology, "Grigore T. Popa" University of Medicine and Pharmacy, Strada Universitatii No. 16, 700115 Iași, Romania.

Doctoral School, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.

出版信息

J Pers Med. 2024 May 9;14(5):501. doi: 10.3390/jpm14050501.

Abstract

Cardiovascular disease (CVD) is the most frequent cause of death worldwide. The alterations in the microcirculation may predict the cardiovascular mortality. The retinal vasculature can be used as a model to study vascular alterations associated with cardiovascular disease. In order to quantify microvascular changes in a non-invasive way, fundus images can be taken and analysed. The central retinal arteriolar (CRAE), the venular (CRVE) diameter and the arteriolar-to-venular diameter ratio (AVR) can be used as biomarkers to predict the cardiovascular mortality. A narrower CRAE, wider CRVE and a lower AVR have been associated with increased cardiovascular events. Dynamic retinal vessel analysis (DRVA) allows the quantification of retinal changes using digital image sequences in response to visual stimulation with flicker light. This article is not just a review of the current literature, it also aims to discuss the methodological benefits and to identify research gaps. It highlights the potential use of microvascular biomarkers for screening and treatment monitoring of cardiovascular disease. Artificial intelligence (AI), such as Quantitative Analysis of Retinal vessel Topology and size (QUARTZ), and SIVA-deep learning system (SIVA-DLS), seems efficient in extracting information from fundus photographs and has the advantage of increasing diagnosis accuracy and improving patient care by complementing the role of physicians. Retinal vascular imaging using AI may help identify the cardiovascular risk, and is an important tool in primary cardiovascular disease prevention. Further research should explore the potential clinical application of retinal microvascular biomarkers, in order to assess systemic vascular health status, and to predict cardiovascular events.

摘要

心血管疾病(CVD)是全球最常见的死亡原因。微循环的改变可能预示着心血管疾病的死亡率。视网膜血管系统可作为研究与心血管疾病相关的血管改变的模型。为了以非侵入性方式量化微血管变化,可以拍摄并分析眼底图像。视网膜中央动脉(CRAE)、静脉(CRVE)直径以及动静脉直径比(AVR)可作为预测心血管疾病死亡率的生物标志物。较窄的CRAE、较宽的CRVE和较低的AVR与心血管事件增加有关。动态视网膜血管分析(DRVA)允许使用数字图像序列来量化视网膜对闪烁光视觉刺激的变化。本文不仅是对当前文献的综述,还旨在讨论方法学上的益处并找出研究空白。它强调了微血管生物标志物在心血管疾病筛查和治疗监测中的潜在用途。人工智能(AI),如视网膜血管拓扑和大小定量分析(QUARTZ)以及SIVA深度学习系统(SIVA-DLS),似乎在从眼底照片中提取信息方面很有效,并且具有通过补充医生的作用来提高诊断准确性和改善患者护理的优势。使用AI的视网膜血管成像可能有助于识别心血管风险,并且是原发性心血管疾病预防中的重要工具。进一步的研究应探索视网膜微血管生物标志物的潜在临床应用,以评估全身血管健康状况并预测心血管事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42e1/11122007/89c10fa67e09/jpm-14-00501-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验