Suppr超能文献

MSNSegNet:基于注意力的组织病理学图像多形状细胞核实例分割。

MSNSegNet: attention-based multi-shape nuclei instance segmentation in histopathology images.

机构信息

School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, Beijing, China.

Xiaomi Corporation, Haidian District, Beijing, 100085, Beijing, China.

出版信息

Med Biol Eng Comput. 2024 Jun;62(6):1821-1836. doi: 10.1007/s11517-024-03050-x. Epub 2024 Feb 24.

Abstract

In clinical research, the segmentation of irregularly shaped nuclei, particularly in mesenchymal areas like fibroblasts, is crucial yet often neglected. These irregular nuclei are significant for assessing tissue repair in immunotherapy, a process involving neovascularization and fibroblast proliferation. Proper segmentation of these nuclei is vital for evaluating immunotherapy's efficacy, as it provides insights into pathological features. However, the challenge lies in the pronounced curvature variations of these non-convex nuclei, making their segmentation more difficult than that of regular nuclei. In this work, we introduce an undefined task to segment nuclei with both regular and irregular morphology, namely multi-shape nuclei segmentation. We propose a proposal-based method to perform multi-shape nuclei segmentation. By leveraging the two-stage structure of the proposal-based method, a powerful refinement module with high computational costs can be selectively deployed only in local regions, improving segmentation accuracy without compromising computational efficiency. We introduce a novel self-attention module to refine features in proposals for the sake of effectiveness and efficiency in the second stage. The self-attention module improves segmentation performance by capturing long-range dependencies to assist in distinguishing the foreground from the background. In this process, similar features get high attention weights while dissimilar ones get low attention weights. In the first stage, we introduce a residual attention module and a semantic-aware module to accurately predict candidate proposals. The two modules capture more interpretable features and introduce additional supervision through semantic-aware loss. In addition, we construct a dataset with a proportion of non-convex nuclei compared with existing nuclei datasets, namely the multi-shape nuclei (MsN) dataset. Our MSNSegNet method demonstrates notable improvements across various metrics compared to the second-highest-scoring methods. For all nuclei, the score improved by approximately 1.66 , by about 2.15 , and by roughly 0.65 . For non-convex nuclei, which are crucial in clinical applications, our method's improved significantly by approximately 3.86 and by around 2.54 . These enhancements underscore the effectiveness of our approach on multi-shape nuclei segmentation, particularly in challenging scenarios involving irregularly shaped nuclei.

摘要

在临床研究中,对非规则形状的细胞核进行分割,特别是在间充质区域(如成纤维细胞)中,是至关重要的,但往往被忽视。这些不规则的细胞核对于评估免疫治疗中的组织修复至关重要,这个过程涉及新血管生成和纤维母细胞增殖。对这些细胞核进行适当的分割对于评估免疫治疗的疗效至关重要,因为它可以深入了解病理特征。然而,挑战在于这些非凸细胞核的曲率变化明显,使得它们的分割比规则细胞核更具挑战性。在这项工作中,我们引入了一个未定义的任务来分割具有规则和不规则形态的细胞核,即多形状细胞核分割。我们提出了一种基于提议的方法来进行多形状细胞核分割。通过利用基于提议的方法的两阶段结构,可以有选择地仅在局部区域部署具有高计算成本的强大细化模块,在不影响计算效率的情况下提高分割准确性。我们引入了一个新的自注意力模块来细化提议中的特征,以提高第二阶段的效率和效果。自注意力模块通过捕获长程依赖关系来帮助区分前景和背景,从而提高分割性能。在此过程中,相似的特征会得到较高的注意力权重,而不相似的特征则会得到较低的注意力权重。在第一阶段,我们引入了一个残差注意力模块和一个语义感知模块来准确地预测候选提议。这两个模块通过语义感知损失捕捉更可解释的特征并引入额外的监督。此外,我们构建了一个与现有细胞核数据集相比,非凸细胞核比例更高的数据集,即多形状细胞核(MsN)数据集。我们的 MSNSegNet 方法在各种指标上的表现都明显优于得分第二高的方法。对于所有细胞核,得分提高了约 1.66 ,召回率提高了约 2.15 ,精度提高了约 0.65 。对于在临床应用中至关重要的非凸细胞核,我们的方法的 F1 得分显著提高了约 3.86 ,mIoU 提高了约 2.54 。这些增强突出了我们的方法在多形状细胞核分割中的有效性,特别是在涉及不规则形状细胞核的具有挑战性的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验