Suppr超能文献

高清超声和细针穿刺诊断小涎腺黏液表皮样癌:一项基于米兰系统的回顾性研究

Mucoepidermoid Carcinoma of the Minor Salivary Glands Diagnosed by High-Definition Ultrasound and Fine-Needle Aspiration: A Milan System-Based Retrospective Study.

作者信息

Limongelli Luisa, Forte Marta, Favia Gianfranco, Dell'Olio Fabio, Ingravallo Giuseppe, Cascardi Eliano, Maiorano Eugenio, Manfuso Alfonso, Copelli Chiara, d'Amati Antonio, Capodiferro Saverio

机构信息

Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70100 Bari, Italy.

Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70100 Bari, Italy.

出版信息

Diagnostics (Basel). 2025 May 7;15(9):1182. doi: 10.3390/diagnostics15091182.

Abstract

: Mucoepidermoid carcinoma (MEC) is the most common malignant tumor of the minor salivary glands, often affecting the hard palate. Preoperative diagnosis and surgical planning are challenging due to anatomical complexity and limitations in sampling, generally obtained by fine-needle aspiration (FNA). This study retrospectively evaluated the diagnostic and therapeutic performance of a high-definition ultrasound (HDUS)-guided fine-needle aspiration cytology/biopsy (FNAC/FNAB) protocol in diagnosing intraoral MEC, based on the Milan System for Reporting Salivary Gland Cytopathology (MSRSGC), with the relative clinical outcomes. : A cohort of 64 patients with histologically confirmed MEC of the minor salivary glands, treated between 2000 and 2022, was retrospectively analyzed. All patients underwent HDUS-guided FNAC/FNAB, imaging (CT, MRI, and panoramic X-ray), and subsequent surgical treatment. The cytological specimens were classified using the MSRSGC. Surgical margins, histopathological findings, lymph node status, and follow-up outcomes were recorded. : Of 64 MECs, 42 cases were finally diagnosed as low-grade (LG)/intermediate grade (IG) and 22 as high-grade (HG) carcinomas, using a two-tier histological classification system. HDUS accurately delineated the lesion size, infiltration depth, and bone proximity, with excellent correlation with surgical specimens (difference ≤ 0.6 mm). MSRSGC classification distributed the cases across all categories, with 28 classified as malignant (category VI). Repeat FNAC improved the diagnostic yield in non-diagnostic and atypical cases. FNAB confirmed the cytological findings in all cases, with immunohistochemistry investigation with Ki-67 supporting tumor grading. Surgical margins were clear in all resections. Lymph node metastases were identified in all patients who underwent neck dissection ( = 18), all with HG-MEC. No recurrences occurred among the LG/IG-MEC patients during a median 2-year follow-up. : The combined use of HDUS and FNAC/FNAB, interpreted through the MSRSGC framework, offers a highly accurate, minimally invasive approach for preoperative diagnosis and surgical planning in intraoral MEC. HDUS-guided cytology significantly improves diagnostic reliability, particularly in LG/IG and cystic variants, facilitating tailored surgical management. Also, the clinical outcomes may support the possibility of using a simplified grading classification for two histopathological types.

摘要

黏液表皮样癌(MEC)是小唾液腺最常见的恶性肿瘤,常累及硬腭。由于解剖结构复杂以及采样受限(一般通过细针穿刺抽吸术(FNA)获取样本),术前诊断和手术规划具有挑战性。本研究基于米兰唾液腺细胞病理学报告系统(MSRSGC),回顾性评估了高清超声(HDUS)引导下细针穿刺抽吸细胞学检查/活检(FNAC/FNAB)方案在诊断口腔内MEC中的诊断和治疗效果,以及相关的临床结果。

对2000年至2022年间接受治疗的64例经组织学确诊为小唾液腺MEC的患者队列进行回顾性分析。所有患者均接受了HDUS引导下的FNAC/FNAB、影像学检查(CT、MRI和全景X线)以及后续的手术治疗。细胞标本采用MSRSGC进行分类。记录手术切缘、组织病理学结果、淋巴结状态和随访结果。

在64例MEC中,采用两级组织学分类系统,42例最终诊断为低级别(LG)/中级(IG)癌,22例为高级别(HG)癌。HDUS准确描绘了病变大小、浸润深度和与骨的接近程度,与手术标本具有极好的相关性(差异≤0.6毫米)。MSRSGC分类将病例分布在所有类别中,28例被分类为恶性(VI类)。重复FNAC提高了非诊断性和非典型病例的诊断率。FNAB在所有病例中均证实了细胞学结果,Ki-67免疫组化研究支持肿瘤分级。所有切除手术的手术切缘均清晰。在接受颈部清扫术的所有患者(n = 18)中均发现淋巴结转移,均为HG-MEC。在中位2年的随访期间,LG/IG-MEC患者未发生复发。

通过MSRSGC框架解读,HDUS与FNAC/FNAB联合应用为口腔内MEC的术前诊断和手术规划提供了一种高度准确、微创的方法。HDUS引导下的细胞学检查显著提高了诊断可靠性,尤其是在LG/IG和囊性变体中,有助于进行个性化的手术管理。此外,临床结果可能支持对两种组织病理学类型采用简化分级分类的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c33/12072121/9f576c121bdc/diagnostics-15-01182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验