Gomez-Hernandez Erik, Hernández-Hernández Ernesto, Castro-Rosas Javier, Vázquez-García Rosa A, Cadena-Ramírez Arturo, Jiménez-Villeda Brenda E, Gomez-Aldapa Carlos A
Doctorado en Ciencias Ambientales, Área Académica de Química-ICBI, Ciudad del Conocimiento, Carretera Pachuca-Tulancingo Km. 4.5, Colonia Carboneras, Mineral de la Reforma 42184, Hidalgo, Mexico.
Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada (CIQA), Blvd. Ing. Enrique Reyna H. No. 140, Col. San José de los Cerritos, Saltillo 25294, Coahuila, Mexico.
Polymers (Basel). 2025 Apr 24;17(9):1156. doi: 10.3390/polym17091156.
The objective of this study was to evaluate how high-energy milling affects the structural, thermal, and morphological properties of brewer's spent grain fibers over time. The researchers determined the chemical composition of the samples using TAPPI techniques, particle size analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The samples displayed distinct morphologies and particle sizes depending on the treatment duration. The sample treated for 120 min (T120) showed the smallest particle size (19.4 µm). FTIR spectra revealed that the mechanical treatment strongly disrupted the structure of hemicellulose. The thermal stability of the samples decreased because of the applied treatment. Mechanical milling also fully eliminated the crystalline structure of cellulose in the samples. These findings indicate that high-energy milling holds strong potential as a pre-treatment method for the valorization of lignocellulosic residues.
本研究的目的是评估高能研磨如何随时间影响啤酒糟纤维的结构、热性能和形态特性。研究人员使用美国制浆造纸工业技术协会(TAPPI)技术、粒度分析、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、热重分析(TGA)和X射线衍射(XRD)来测定样品的化学成分。根据处理时间的不同,样品呈现出不同的形态和粒度。处理120分钟的样品(T120)显示出最小的粒度(19.4微米)。傅里叶变换红外光谱表明,机械处理强烈破坏了半纤维素的结构。由于进行了处理,样品的热稳定性降低。机械研磨还完全消除了样品中纤维素的晶体结构。这些发现表明,高能研磨作为一种预处理方法,在木质纤维素残渣增值利用方面具有巨大潜力。